braindecode.modules.Conv2dWithConstraint#
- class braindecode.modules.Conv2dWithConstraint(*args, max_norm=1, **kwargs)[source]#
2D convolution with max-norm constraint on the weights.
Examples
>>> import torch >>> from braindecode.modules import Conv2dWithConstraint >>> module = Conv2dWithConstraint(4, 8, kernel_size=(1, 3), padding=(0, 1), bias=False) >>> inputs = torch.randn(2, 4, 1, 64) >>> outputs = module(inputs) >>> outputs.shape torch.Size([2, 8, 1, 64])