braindecode.models.ShallowFBCSPNet#

class braindecode.models.ShallowFBCSPNet(n_chans=None, n_outputs=None, n_times=None, n_filters_time=40, filter_time_length=25, n_filters_spat=40, pool_time_length=75, pool_time_stride=15, final_conv_length='auto', conv_nonlin=<function square>, pool_mode='mean', activation_pool_nonlin=<class 'braindecode.modules.activation.SafeLog'>, split_first_layer=True, batch_norm=True, batch_norm_alpha=0.1, drop_prob=0.5, chs_info=None, input_window_seconds=None, sfreq=None)[source]#

Shallow ConvNet model from Schirrmeister et al (2017) [Schirrmeister2017].

Convolution

ShallowNet Architecture

Model described in [Schirrmeister2017].

Parameters:
  • n_filters_time (int) – Number of temporal filters.

  • filter_time_length (int) – Length of the temporal filter.

  • n_filters_spat (int) – Number of spatial filters.

  • pool_time_length (int) – Length of temporal pooling filter.

  • pool_time_stride (int) – Length of stride between temporal pooling filters.

  • final_conv_length (int | str) – Length of the final convolution layer. If set to “auto”, length of the input signal must be specified.

  • conv_nonlin (callable) – Non-linear function to be used after convolution layers.

  • pool_mode (str) – Method to use on pooling layers. “max” or “mean”.

  • activation_pool_nonlin (callable) – Non-linear function to be used after pooling layers.

  • split_first_layer (bool) – Split first layer into temporal and spatial layers (True) or just use temporal (False). There would be no non-linearity between the split layers.

  • batch_norm (bool) – Whether to use batch normalisation.

  • batch_norm_alpha (float) – Momentum for BatchNorm2d.

  • drop_prob (float) – Dropout probability.

References

[Schirrmeister2017] (1,2)

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F. & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping , Aug. 2017. Online: http://dx.doi.org/10.1002/hbm.23730

Examples using braindecode.models.ShallowFBCSPNet#

Simple training on MNE epochs

Simple training on MNE epochs

Cropped Decoding on BCIC IV 2a Dataset

Cropped Decoding on BCIC IV 2a Dataset

Basic Brain Decoding on EEG Data

Basic Brain Decoding on EEG Data

How to train, test and tune your model?

How to train, test and tune your model?

Hyperparameter tuning with scikit-learn

Hyperparameter tuning with scikit-learn

Convolutional neural network regression model on fake data.

Convolutional neural network regression model on fake data.

Training a Braindecode model in PyTorch

Training a Braindecode model in PyTorch

Benchmarking eager and lazy loading

Benchmarking eager and lazy loading

Fingers flexion cropped decoding on BCIC IV 4 ECoG Dataset

Fingers flexion cropped decoding on BCIC IV 4 ECoG Dataset

Data Augmentation on BCIC IV 2a Dataset

Data Augmentation on BCIC IV 2a Dataset

Searching the best data augmentation on BCIC IV 2a Dataset

Searching the best data augmentation on BCIC IV 2a Dataset

Fingers flexion decoding on BCIC IV 4 ECoG Dataset

Fingers flexion decoding on BCIC IV 4 ECoG Dataset