braindecode.models.TIDNet#
- class braindecode.models.TIDNet(n_chans=None, n_outputs=None, n_times=None, input_window_seconds=None, sfreq=None, chs_info=None, s_growth=24, t_filters=32, drop_prob=0.4, pooling=15, temp_layers=2, spat_layers=2, temp_span=0.05, bottleneck=3, summary=-1, activation: ~torch.nn.modules.module.Module = <class 'torch.nn.modules.activation.LeakyReLU'>)[source]#
Thinker Invariance DenseNet model from Kostas et al. (2020) [TIDNet].
See [TIDNet] for details.
- Parameters:
n_chans (int) – Number of EEG channels.
n_outputs (int) – Number of outputs of the model. This is the number of classes in the case of classification.
n_times (int) – Number of time samples of the input window.
input_window_seconds (float) – Length of the input window in seconds.
sfreq (float) – Sampling frequency of the EEG recordings.
chs_info (list of dict) – Information about each individual EEG channel. This should be filled with
info["chs"]
. Refer tomne.Info
for more details.s_growth (int) – DenseNet-style growth factor (added filters per DenseFilter)
t_filters (int) – Number of temporal filters.
drop_prob (float) – Dropout probability
pooling (int) – Max temporal pooling (width and stride)
temp_layers (int) – Number of temporal layers
spat_layers (int) – Number of DenseFilters
temp_span (float) – Percentage of n_times that defines the temporal filter length: temp_len = ceil(temp_span * n_times) e.g A value of 0.05 for temp_span with 1500 n_times will yield a temporal filter of length 75.
bottleneck (int) – Bottleneck factor within Densefilter
summary (int) – Output size of AdaptiveAvgPool1D layer. If set to -1, value will be calculated automatically (n_times // pooling).
activation (nn.Module, default=nn.LeakyReLU) – Activation function class to apply. Should be a PyTorch activation module class like
nn.ReLU
ornn.ELU
. Default isnn.LeakyReLU
.
- Raises:
ValueError – If some input signal-related parameters are not specified: and can not be inferred.
FutureWarning – If add_log_softmax is True, since LogSoftmax final layer: will be removed in the future.
Notes
Code adapted from: SPOClab-ca/ThinkerInvariance
References
Methods
- forward(x)[source]#
Forward pass.
- Parameters:
x (torch.Tensor) – Batch of EEG windows of shape (batch_size, n_channels, n_times).