braindecode.visualization.plot_confusion_matrix#
- braindecode.visualization.plot_confusion_matrix(confusion_mat, class_names=None, figsize=None, colormap=<matplotlib.colors.LinearSegmentedColormap object>, textcolor='black', vmin=None, vmax=None, fontweight='normal', rotate_row_labels=90, rotate_col_labels=0, with_f1_score=False, norm_axes=(0, 1), rotate_precision=False, class_names_fontsize=12)[source]#
Generates a confusion matrix with additional precision and sensitivity metrics as in [1].
- Parameters:
confusion_mat (2d numpy array) – A confusion matrix, e.g. sklearn confusion matrix: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
class_names (array, optional) – List of classes/targets.
figsize (tuple, optional) – Size of the generated confusion matrix figure.
colormap (matplotlib cm colormap, optional)
textcolor (str, optional) – Color of the text in the figure.
vmin (float, optional) – The data range that the colormap covers.
vmax (float, optional) – The data range that the colormap covers.
fontweight (str, optional) – Weight of the font in the figure: [ ‘normal’ | ‘bold’ | ‘heavy’ | ‘light’ | ‘ultrabold’ | ‘ultralight’]
rotate_row_labels (int, optional) – The rotation angle of the row labels
rotate_col_labels (int, optional) – The rotation angle of the column labels
with_f1_score (bool, optional)
norm_axes (tuple, optional)
rotate_precision (bool, optional)
class_names_fontsize (int, optional)
- Returns:
fig
- Return type:
matplotlib figure
References
[1]Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F. & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping , Aug. 2017. Online: http://dx.doi.org/10.1002/hbm.23730
Examples using braindecode.visualization.plot_confusion_matrix
#
Cropped Decoding on BCIC IV 2a Dataset
Basic Brain Decoding on EEG Data
Sleep staging on the Sleep Physionet dataset using Chambon2018 network
Sleep staging on the Sleep Physionet dataset using Eldele2021
Sleep staging on the Sleep Physionet dataset using U-Sleep network