braindecode.modules.FeedForwardBlock#

class braindecode.modules.FeedForwardBlock(emb_size, expansion, drop_p, activation=<class 'torch.nn.modules.activation.GELU'>)[source]#

Feedforward network block.

Parameters:
  • emb_size (int) – Embedding dimension.

  • expansion (int) – Expansion factor for the hidden layer size.

  • drop_p (float) – Dropout probability.

  • activation (type[nn.Module], default=nn.GELU) – Activation function constructor.

Examples

>>> import torch
>>> from braindecode.modules import FeedForwardBlock
>>> module = FeedForwardBlock(emb_size=32, expansion=2, drop_p=0.1)
>>> inputs = torch.randn(2, 10, 32)
>>> outputs = module(inputs)
>>> outputs.shape
torch.Size([2, 10, 32])