braindecode.datautil.infer_signal_properties#

braindecode.datautil.infer_signal_properties(X, y=None, mode='classification', classes=None)[source]#

Infers signal properties from the data.

The extracted signal properties are:

  • n_chans: number of channels

  • n_times: number of time points

  • n_outputs: number of outputs

  • chs_info: channel information

  • sfreq: sampling frequency

The returned dictionary can serve as kwargs for model initialization.

Depending on the type of input passed, not all properties can be inferred.

Parameters:
  • X (array-like or mne.BaseEpochs or Dataset) – Input data

  • y (array-like or None) – Targets

  • mode ("classification" or "regression") – Mode of the task

  • classes (list or None) – List of classes for classification

Returns:

signal_kwargs – Dictionary with signal-properties. Can serve as kwargs for model initialization.

Return type:

dict

Examples using braindecode.datautil.infer_signal_properties#

Simple training on MNE epochs

Simple training on MNE epochs

Basic Brain Decoding on EEG Data

Basic Brain Decoding on EEG Data