braindecode.augmentation.functional.channels_rereference#

braindecode.augmentation.functional.channels_rereference(X, y, random_state=None)[source]#

Randomly re-reference channels in EEG data matrix.

Part of the augmentations proposed in [1]

Parameters:
  • X (torch.Tensor) – EEG input example or batch.

  • y (torch.Tensor) – EEG labels for the example or batch.

  • random_state (int | numpy.random.Generator, optional) – Seed to be used to instantiate numpy random number generator instance. Defaults to None.

Return type:

tuple[Tensor, Tensor]

Returns:

  • torch.Tensor – Transformed inputs.

  • torch.Tensor – Transformed labels.

References

[1]

Mohsenvand, M.N., Izadi, M.R. & Maes, P.. (2020). Contrastive Representation Learning for Electroencephalogram Classification. Proceedings of the Machine Learning for Health NeurIPS Workshop, in Proceedings of Machine Learning Research 136:238-253