braindecode.models.DeepSleepNet#
- class braindecode.models.DeepSleepNet(n_outputs=5, return_feats=False, n_chans=None, chs_info=None, n_times=None, input_window_seconds=None, sfreq=None, activation_large: ~torch.nn.modules.module.Module = <class 'torch.nn.modules.activation.ELU'>, activation_small: ~torch.nn.modules.module.Module = <class 'torch.nn.modules.activation.ReLU'>, drop_prob: float = 0.5)[source]#
Sleep staging architecture from Supratak et al. (2017) [Supratak2017].
Convolutional neural network and bidirectional-Long Short-Term for single channels sleep staging described in [Supratak2017].
- Parameters:
n_outputs (int) – Number of outputs of the model. This is the number of classes in the case of classification.
return_feats (bool) – If True, return the features, i.e. the output of the feature extractor (before the final linear layer). If False, pass the features through the final linear layer.
n_chans (int) – Number of EEG channels.
chs_info (list of dict) – Information about each individual EEG channel. This should be filled with
info["chs"]
. Refer tomne.Info
for more details.n_times (int) – Number of time samples of the input window.
input_window_seconds (float) – Length of the input window in seconds.
sfreq (float) – Sampling frequency of the EEG recordings.
activation_large (nn.Module, default=nn.ELU) – Activation function class to apply. Should be a PyTorch activation module class like
nn.ReLU
ornn.ELU
. Default isnn.ELU
.activation_small (nn.Module, default=nn.ReLU) – Activation function class to apply. Should be a PyTorch activation module class like
nn.ReLU
ornn.ELU
. Default isnn.ReLU
.drop_prob (float, default=0.5) – The dropout rate for regularization. Values should be between 0 and 1.
- Raises:
ValueError – If some input signal-related parameters are not specified: and can not be inferred.
FutureWarning – If add_log_softmax is True, since LogSoftmax final layer: will be removed in the future.
Notes
If some input signal-related parameters are not specified, there will be an attempt to infer them from the other parameters.
References
Methods
- forward(x)[source]#
Forward pass.
- Parameters:
x (torch.Tensor) – Batch of EEG windows of shape (batch_size, n_channels, n_times).