braindecode.samplers.DistributedRecordingSampler#
- class braindecode.samplers.DistributedRecordingSampler(metadata, random_state=None, **kwargs)[source]#
Base sampler simplifying sampling from recordings in distributed setting.
- Parameters:
metadata (pd.DataFrame) –
DataFrame with at least one of {subject, session, run} columns for each window in the BaseConcatDataset to sample examples from. Normally obtained with BaseConcatDataset.get_metadata(). For instance, metadata.head() might look like this:
i_window_in_trial i_start_in_trial i_stop_in_trial target subject session run
0 0 0 500 -1 4 session_T run_0 1 1 500 1000 -1 4 session_T run_0 2 2 1000 1500 -1 4 session_T run_0 3 3 1500 2000 -1 4 session_T run_0 4 4 2000 2500 -1 4 session_T run_0
random_state (np.RandomState | int | None) – Random state.
- info#
Series with MultiIndex index which contains the subject, session, run and window indices information in an easily accessible structure for quick sampling of windows.
- Type:
pd.DataFrame
- kwargs#
Additional keyword arguments to pass to torch DistributedSampler. See https://pytorch.org/docs/stable/data.html#torch.utils.data.distributed.DistributedSampler
- Type:
Methods