Models Summary#

This page offers a summary of all braindecode implemented models. For more information on each model, please consult the API.

Columns definitions:

  • Model: The name of the model.

  • Application: The application(s) the model is typically used for (e.g., Motor Imagery, P300, Sleep Staging). ‘General’ indicates applicability across multiple applications or no specific application focus.

  • Type: The model’s primary function (e.g., Classification, Regression, Embedding).

  • Sampling Frequency: The data sampling rate (in Hertz) the model is designed for. Note that this might be adaptable depending on the specific dataset and application.

  • Categorization: models categorization based on the main building blocks used in the architecture. See Models Categorization page for more details.

  • Hyperparameters: The mandatory hyperparameters required for instantiating the model class. These may include:
    • n_chans, number of channels/electrodes/sensors,

    • n_outputs, number of output classes or regression targets,

    • n_times, number of time points in the input window,

    • freq (Hz), sampling frequency,

    • chs_info, information about each individual EEG channel. Refer to mne.Info (see its “chs” field for details)

Also, n_times can be derived implicitly by providing both sfreq and input_window_seconds.

  • #Parameters: The approximate total number of trainable parameters in the model, calculated using a consistent configuration (see note below).

Model Application Type Categorization Sampling Frequency (Hz) #Parameters Hyperparameters
ATCNet General Classification Convolution Recurrent Small Attention 250 113732  n_chans
 n_outputs
 n_times
AttentionBaseNet Motor Imagery Classification Convolution Small Attention 250 3692  n_chans
 n_outputs
 n_times
BDTCN Normal Abnormal Classification Convolution Recurrent 100 456502  n_chans
 n_outputs
 n_times
BIOT Sleep Staging Epilepsy Classification Large Language Model 200 3183879  n_chans
 n_outputs
ContraWR Sleep Staging Classification Embedding Convolution 125 1160165  n_chans
 n_outputs
 freq (Hz)
CTNet Motor Imagery Classification Convolution Small Attention 250 26900  n_chans
 n_outputs
 n_times
Deep4Net General Classification Convolution 250 282879  n_chans
 n_outputs
 n_times
DeepSleepNet Sleep Staging Classification Convolution Recurrent 256 24744837  n_chans
 n_outputs
EEGConformer General Classification Convolution Small Attention 250 789572  n_chans
 n_outputs
 n_times
EEGInceptionERP ERP SSVEP Classification Convolution 128 14926  n_chans
 n_outputs
EEGInceptionMI Motor Imagery Classification Convolution 250 558028  n_chans
 n_outputs
 n_times
EEGITNet Motor Imagery Classification Convolution Recurrent 125 5212  n_chans
 n_outputs
 n_times
EEGNet General Classification Convolution 128 2484  n_chans
 n_outputs
 n_times
EEGNeX Motor Imagery Classification Convolution 125 55940  n_chans
 n_outputs
 n_times
EEGMiner Emotion Recognition Classification Convolution Interpretability 128 7572  n_chans
 n_outputs
 n_times
 freq (Hz)
EEGSimpleConv Motor Imagery Classification Convolution 80 730404  n_chans
 n_outputs
 freq (Hz)
EEGTCNet Motor Imagery Classification Convolution Recurrent 250 4516  n_chans
 n_outputs
Labram General Classification Embedding Convolution Large Language Model 200 5866180  n_chans
 n_outputs
 n_times
MSVTNet Motor Imagery Classification Convolution Recurrent Small Attention 250 75494  n_chans
 n_outputs
 n_times
SCCNet Motor Imagery Classification Convolution 125 12070  n_chans
 n_outputs
 n_times
 freq (Hz)
SignalJEPA Motor Imagery ERP SSVEP Embedding Convolution Channel Large Language Model 128 3456882  n_times
 chs_info
SignalJEPA_Contextual Motor Imagery ERP SSVEP Classification Convolution Channel Large Language Model 128 3459184  n_outputs
 n_times
 chs_info
SignalJEPA_PostLocal Motor Imagery ERP SSVEP Classification Convolution Channel Large Language Model 128 16142  n_chans
 n_outputs
 n_times
SignalJEPA_PreLocal Motor Imagery ERP SSVEP Classification Convolution Channel Large Language Model 128 16142  n_outputs
 n_times
 chs_info
SincShallowNet Motor Imagery Classification Convolution Interpretability 250 21892  n_chans
 n_outputs
 n_times
 freq (Hz)
ShallowFBCSPNet General Classification Convolution 250 46084  n_chans
 n_outputs
 n_times
SleepStagerBlanco2020 Sleep Staging Classification Convolution 100 2845  n_chans
 n_outputs
 n_times
SleepStagerChambon2018 Sleep Staging Classification Convolution 128 5835  n_chans
 n_outputs
 n_times
 freq (Hz)
AttnSleep Sleep Staging Classification Convolution Small Attention 100 719925  n_chans
 n_outputs
 n_times
 freq (Hz)
SPARCNet Epilepsy Classification Convolution 200 1141921  n_chans
 n_outputs
 n_times
SyncNet Emotion Recognition Alcoholism Classification Interpretability 256 554  n_chans
 n_outputs
 n_times
TSception Emotion Recognition Classification Convolution 256 2187206  n_chans
 n_outputs
 n_times
 freq (Hz)
TIDNet General Classification Convolution 250 240404  n_chans
 n_outputs
 n_times
USleep Sleep Staging Classification Convolution 128 2482011  n_chans
 n_outputs
 n_times
 freq (Hz)
FBCNet Motor Imagery Classification Convolution FilterBank 250 11812  n_chans
 n_outputs
 n_times
 freq (Hz)
FBMSNet Motor Imagery Classification Convolution FilterBank 250 16231  n_chans
 n_outputs
 n_times
 freq (Hz)
FBLightConvNet Motor Imagery Classification Convolution FilterBank 250 6596  n_chans
 n_outputs
 n_times
 freq (Hz)
IFNet Motor Imagery Classification Convolution FilterBank 250 9860  n_chans
 n_outputs
 n_times
 freq (Hz)

The parameter counts shown in the table were calculated using consistent hyperparameters for models within the same paradigm, based largely on Braindecode’s default implementation values. These counts provide a relative comparison but may differ from those reported in the original publications due to variations in specific architectural details, input dimensions used in the paper, or calculation methods.

We are continually expanding this collection and welcome contributions! If you have implemented a model relevant to EEG, EcoG, or MEG analysis, consider adding it to Braindecode.

Next: Models Parameter Visualization