braindecode.preprocessing.exponential_moving_standardize#

braindecode.preprocessing.exponential_moving_standardize(data, factor_new=0.001, init_block_size=None, eps=0.0001)[source]#

Perform exponential moving standardization.

Compute the exponental moving mean \(m_t\) at time t as \(m_t=\mathrm{factornew} \cdot mean(x_t) + (1 - \mathrm{factornew}) \cdot m_{t-1}\).

Then, compute exponential moving variance \(v_t\) at time t as \(v_t=\mathrm{factornew} \cdot (m_t - x_t)^2 + (1 - \mathrm{factornew}) \cdot v_{t-1}\).

Finally, standardize the data point \(x_t\) at time t as: \(x'_t=(x_t - m_t) / max(\sqrt{->v_t}, eps)\).

Parameters:
  • data (np.ndarray (n_channels, n_times)) –

  • factor_new (float) –

  • init_block_size (int) – Standardize data before to this index with regular standardization.

  • eps (float) – Stabilizer for division by zero variance.

Returns:

standardized – Standardized data.

Return type:

np.ndarray (n_channels, n_times)

Examples using braindecode.preprocessing.exponential_moving_standardize#

Cropped Decoding on BCIC IV 2a Dataset

Cropped Decoding on BCIC IV 2a Dataset

Basic Brain Decoding on EEG Data

Basic Brain Decoding on EEG Data

How to train, test and tune your model?

How to train, test and tune your model?

Hyperparameter tuning with scikit-learn

Hyperparameter tuning with scikit-learn

Training a Braindecode model in PyTorch

Training a Braindecode model in PyTorch

Fingers flexion cropped decoding on BCIC IV 4 ECoG Dataset

Fingers flexion cropped decoding on BCIC IV 4 ECoG Dataset

Data Augmentation on BCIC IV 2a Dataset

Data Augmentation on BCIC IV 2a Dataset

Searching the best data augmentation on BCIC IV 2a Dataset

Searching the best data augmentation on BCIC IV 2a Dataset

Fingers flexion decoding on BCIC IV 4 ECoG Dataset

Fingers flexion decoding on BCIC IV 4 ECoG Dataset