braindecode.preprocessing.exponential_moving_standardize#
- braindecode.preprocessing.exponential_moving_standardize(data, factor_new=0.001, init_block_size=None, eps=0.0001)[source]#
Perform exponential moving standardization.
Compute the exponental moving mean \(m_t\) at time t as \(m_t=\mathrm{factornew} \cdot mean(x_t) + (1 - \mathrm{factornew}) \cdot m_{t-1}\).
Then, compute exponential moving variance \(v_t\) at time t as \(v_t=\mathrm{factornew} \cdot (m_t - x_t)^2 + (1 - \mathrm{factornew}) \cdot v_{t-1}\).
Finally, standardize the data point \(x_t\) at time t as: \(x'_t=(x_t - m_t) / max(\sqrt{->v_t}, eps)\).
- Parameters:
- Returns:
standardized – Standardized data.
- Return type:
np.ndarray (n_channels, n_times)
Examples using braindecode.preprocessing.exponential_moving_standardize
#
Cropped Decoding on BCIC IV 2a Dataset
Basic Brain Decoding on EEG Data
How to train, test and tune your model?
Hyperparameter tuning with scikit-learn
Training a Braindecode model in PyTorch
Fingers flexion cropped decoding on BCIC IV 4 ECoG Dataset
Data Augmentation on BCIC IV 2a Dataset
Searching the best data augmentation on BCIC IV 2a Dataset
Fingers flexion decoding on BCIC IV 4 ECoG Dataset