braindecode.augmentation.GaussianNoise#
- class braindecode.augmentation.GaussianNoise(probability, std=0.1, random_state=None)[source]#
Randomly add white noise to all channels.
Suggested e.g. in [1], [2] and [3]
- Parameters:
probability (float) – Float setting the probability of applying the operation.
std (float, optional) – Standard deviation to use for the additive noise. Defaults to 0.1.
random_state (int | numpy.random.Generator, optional) – Seed to be used to instantiate numpy random number generator instance. Defaults to None.
References
[1]Wang, F., Zhong, S. H., Peng, J., Jiang, J., & Liu, Y. (2018). Data augmentation for eeg-based emotion recognition with deep convolutional neural networks. In International Conference on Multimedia Modeling (pp. 82-93).
[2]Cheng, J. Y., Goh, H., Dogrusoz, K., Tuzel, O., & Azemi, E. (2020). Subject-aware contrastive learning for biosignals. arXiv preprint arXiv:2007.04871.
[3]Mohsenvand, M. N., Izadi, M. R., & Maes, P. (2020). Contrastive Representation Learning for Electroencephalogram Classification. In Machine Learning for Health (pp. 238-253). PMLR.
Methods
- get_augmentation_params(*batch)[source]#
Return transform parameters.
- Parameters:
X (tensor.Tensor) – The data.
y (tensor.Tensor) – The labels.
- Returns:
params – Contains
- stdfloat
Standard deviation to use for the additive noise.
- random_statenumpy.random.Generator
The generator to use.
- Return type:
- static operation(X, y, std, random_state=None)[source]#
Randomly add white Gaussian noise to all channels.
Suggested e.g. in [1], [2] and [3]
- Parameters:
X (torch.Tensor) – EEG input example or batch.
y (torch.Tensor) – EEG labels for the example or batch.
std (float) – Standard deviation to use for the additive noise.
random_state (int | numpy.random.Generator, optional) – Seed to be used to instantiate numpy random number generator instance. Defaults to None.
- Returns:
torch.Tensor – Transformed inputs.
torch.Tensor – Transformed labels.
References
[1]Wang, F., Zhong, S. H., Peng, J., Jiang, J., & Liu, Y. (2018). Data augmentation for eeg-based emotion recognition with deep convolutional neural networks. In International Conference on Multimedia Modeling (pp. 82-93).
[2]Cheng, J. Y., Goh, H., Dogrusoz, K., Tuzel, O., & Azemi, E. (2020). Subject-aware contrastive learning for biosignals. arXiv preprint arXiv:2007.04871.
[3]Mohsenvand, M. N., Izadi, M. R., & Maes, P. (2020). Contrastive Representation Learning for Electroencephalogram Classification. In Machine Learning for Health (pp. 238-253). PMLR.