braindecode.augmentation.functional.sensors_rotation#
- braindecode.augmentation.functional.sensors_rotation(X, y, sensors_positions_matrix, axis, angles, spherical_splines)[source]#
Interpolates EEG signals over sensors rotated around the desired axis with the desired angle.
Suggested in [1]
- Parameters:
X (torch.Tensor) – EEG input example or batch.
y (torch.Tensor) – EEG labels for the example or batch.
sensors_positions_matrix (numpy.ndarray) –
Matrix giving the positions of each sensor in a 3D cartesian coordinate system. Should have shape (3, n_channels), where n_channels is the number of channels. Standard 10-20 positions can be obtained from
mne
through:>>> ten_twenty_montage = mne.channels.make_standard_montage( ... 'standard_1020' ... ).get_positions()['ch_pos']
axis ('x' | 'y' | 'z') – Axis around which to rotate.
angles (array-like) – Array of float of shape
(batch_size,)
containing the rotation angles (in degrees) for each element of the input batch.spherical_splines (bool) – Whether to use spherical splines for the interpolation or not. When False, standard scipy.interpolate.Rbf (with quadratic kernel) will be used (as in the original paper).
References
[1]Krell, M. M., & Kim, S. K. (2017). Rotational data augmentation for electroencephalographic data. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 471-474).