braindecode.modules.SqueezeAndExcitation#
- class braindecode.modules.SqueezeAndExcitation(in_channels, reduction_rate, bias=False)[source]#
Squeeze-and-Excitation Networks from [Hu2018].
- Parameters:
Examples
>>> import torch >>> from braindecode.modules import SqueezeAndExcitation >>> module = SqueezeAndExcitation(in_channels=16, reduction_rate=4) >>> inputs = torch.randn(2, 16, 1, 64) >>> outputs = module(inputs) >>> outputs.shape torch.Size([2, 16, 1, 64])
References
[Hu2018]Hu, J., Albanie, S., Sun, G., Wu, E., 2018. Squeeze-and-Excitation Networks. CVPR 2018.
Methods