MOABB Dataset Example

In this example, we show how to fetch and prepare a MOABB dataset for usage with Braindecode.

# Authors: Lukas Gemein <l.gemein@gmail.com>
#          Hubert Banville <hubert.jbanville@gmail.com>
#          Simon Brandt <simonbrandt@protonmail.com>
#
# License: BSD (3-clause)

import matplotlib.pyplot as plt

from braindecode.datasets import MOABBDataset
from braindecode.preprocessing import \
    create_windows_from_events, create_fixed_length_windows
from braindecode.preprocessing import preprocess, Preprocessor

First, we create a dataset based on BCIC IV 2a fetched with MOABB,

dataset = MOABBDataset(dataset_name="BNCI2014001", subject_ids=[1])

ds has a pandas DataFrame with additional description of its internal datasets

dataset.description
subject session run
0 1 session_T run_0
1 1 session_T run_1
2 1 session_T run_2
3 1 session_T run_3
4 1 session_T run_4
5 1 session_T run_5
6 1 session_E run_0
7 1 session_E run_1
8 1 session_E run_2
9 1 session_E run_3
10 1 session_E run_4
11 1 session_E run_5


We can iterate through ds which yields one time point of a continuous signal x, and a target y (which can be None if targets are not defined for the entire continuous signal).

for x, y in dataset:
    print(x.shape, y)
    break

Out:

(26, 1) None

We can apply preprocessing transforms that are defined in mne and work in-place, such as resampling, bandpass filtering, or electrode selection.

preprocessors = [
    Preprocessor('pick_types', eeg=True, meg=False, stim=True),
    Preprocessor('resample', sfreq=100)
]
print(dataset.datasets[0].raw.info["sfreq"])
preprocess(dataset, preprocessors)
print(dataset.datasets[0].raw.info["sfreq"])

Out:

250.0
100.0

We can easily split ds based on a criteria applied to the description DataFrame:

subsets = dataset.split("session")
print({subset_name: len(subset) for subset_name, subset in subsets.items()})

Out:

{'session_E': 232164, 'session_T': 232164}

Next, we use a windower to extract events from the dataset based on events:

windows_dataset = create_windows_from_events(
    dataset, trial_start_offset_samples=0, trial_stop_offset_samples=100,
    window_size_samples=400, window_stride_samples=100,
    drop_last_window=False)

We can iterate through the windows_ds which yields a window x, a target y, and window_ind (which itself contains i_window_in_trial, i_start_in_trial, and i_stop_in_trial, which are required for combining window predictions in the scorer).

for x, y, window_ind in windows_dataset:
    print(x.shape, y, window_ind)
    break

Out:

(23, 400) 3 [0, 300, 700]

We visually inspect the windows:

max_i = 2
fig, ax_arr = plt.subplots(1, max_i + 1, figsize=(3.5 * (max_i + 1), 3.5),
                           sharex=True, sharey=True)
for i, (x, y, window_ind) in enumerate(windows_dataset):
    ax_arr[i].plot(x.T)
    ax_arr[i].set_ylim(-4e-5, 4e-5)
    ax_arr[i].set_title(f"label={y}")
    if i == max_i:
        break

fig.tight_layout()
label=3, label=3, label=0

Alternatively, we can create evenly spaced (“sliding”) windows using a different windower.

sliding_windows_dataset = create_fixed_length_windows(
    dataset, start_offset_samples=0, stop_offset_samples=0,
    window_size_samples=1200, window_stride_samples=1000,
    drop_last_window=False)

print(len(sliding_windows_dataset))
for x, y, window_ind in sliding_windows_dataset:
    print(x.shape, y, window_ind)
    break

sliding_windows_dataset.description

Out:

/home/runner/work/braindecode/braindecode/braindecode/preprocessing/windowers.py:597: UserWarning: Meaning of `trial_stop_offset_samples`=0 has changed, use `None` to indicate end of trial/recording. Using `None`.
  'Meaning of `trial_stop_offset_samples`=0 has changed, use `None` '
468
(23, 1200) -1 [0, 0, 1200]
subject session run
0 1 session_T run_0
1 1 session_T run_1
2 1 session_T run_2
3 1 session_T run_3
4 1 session_T run_4
5 1 session_T run_5
6 1 session_E run_0
7 1 session_E run_1
8 1 session_E run_2
9 1 session_E run_3
10 1 session_E run_4
11 1 session_E run_5


Transforms can also be applied on windows in the same way as shown above on continuous data:

def crop_windows(windows, start_offset_samples, stop_offset_samples):
    fs = windows.info["sfreq"]
    windows.crop(tmin=start_offset_samples / fs, tmax=stop_offset_samples / fs,
                 include_tmax=False)


epochs_preprocessors = [
    Preprocessor('pick_types', eeg=True, meg=False, stim=False),
    Preprocessor(crop_windows, apply_on_array=False, start_offset_samples=100,
                 stop_offset_samples=900)
]

print(windows_dataset.datasets[0].windows.info["ch_names"],
      len(windows_dataset.datasets[0].windows.times))
preprocess(windows_dataset, epochs_preprocessors)
print(windows_dataset.datasets[0].windows.info["ch_names"],
      len(windows_dataset.datasets[0].windows.times))


max_i = 2
fig, ax_arr = plt.subplots(1, max_i + 1, figsize=(3.5 * (max_i + 1), 3.5),
                           sharex=True, sharey=True)
for i, (x, y, window_ind) in enumerate(windows_dataset):
    ax_arr[i].plot(x.T)
    ax_arr[i].set_ylim(-4e-5, 4e-5)
    ax_arr[i].set_title(f"label={y}")
    if i == max_i:
        break

fig.tight_layout()
plt.show()
label=3, label=3, label=0

Out:

['Fz', 'FC3', 'FC1', 'FCz', 'FC2', 'FC4', 'C5', 'C3', 'C1', 'Cz', 'C2', 'C4', 'C6', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'P1', 'Pz', 'P2', 'POz', 'stim'] 400
['Fz', 'FC3', 'FC1', 'FCz', 'FC2', 'FC4', 'C5', 'C3', 'C1', 'Cz', 'C2', 'C4', 'C6', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'P1', 'Pz', 'P2', 'POz'] 300

Again, we can easily split windows_ds based on some criteria in the description DataFrame:

subsets = windows_dataset.split("session")
print({subset_name: len(subset) for subset_name, subset in subsets.items()})

Out:

{'session_E': 576, 'session_T': 576}

Total running time of the script: ( 0 minutes 8.463 seconds)

Estimated memory usage: 371 MB

Gallery generated by Sphinx-Gallery