braindecode.training.PostEpochTrainScoring¶
- class braindecode.training.PostEpochTrainScoring(scoring, lower_is_better=True, name=None, target_extractor=<function to_numpy>)¶
Epoch Scoring class that recomputes predictions after the epoch on the training in validation mode.
Note: For unknown reasons, this affects global random generator and therefore all results may change slightly if you add this scoring callback.
- Parameters
- scoringNone, str, or callable (default=None)
If None, use the
score
method of the model. If str, it should be a valid sklearn scorer (e.g. “f1”, “accuracy”). If a callable, it should have the signature (model, X, y), and it should return a scalar. This works analogously to thescoring
parameter in sklearn’sGridSearchCV
et al.- lower_is_betterbool (default=True)
Whether lower scores should be considered better or worse.
- namestr or None (default=None)
If not an explicit string, tries to infer the name from the
scoring
argument.- target_extractorcallable (default=to_numpy)
This is called on y before it is passed to scoring.
Methods
- on_epoch_end(net, dataset_train, dataset_valid, **kwargs)¶
Called at the end of each epoch.