braindecode.augmentation.ChannelsDropout

class braindecode.augmentation.ChannelsDropout(probability, p_drop=0.2, random_state=None)

Randomly set channels to flat signal.

Part of the CMSAugment policy proposed in [1]

Parameters
probability: float

Float setting the probability of applying the operation.

proba_drop: float | None, optional

Float between 0 and 1 setting the probability of dropping each channel. Defaults to 0.2.

random_state: int | numpy.random.Generator, optional

Seed to be used to instantiate numpy random number generator instance. Used to decide whether or not to transform given the probability argument and to sample channels to erase. Defaults to None.

References

1

Saeed, A., Grangier, D., Pietquin, O., & Zeghidour, N. (2020). Learning from Heterogeneous EEG Signals with Differentiable Channel Reordering. arXiv preprint arXiv:2010.13694.

Methods

get_params(*batch)

Return transform parameters.

Parameters
Xtensor.Tensor

The data.

ytensor.Tensor

The labels.

Returns
paramsdict

Contains

  • p_dropfloat

    Float between 0 and 1 setting the probability of dropping each channel.

  • random_statenumpy.random.Generator

    The generator to use.

static operation(X, y, p_drop, random_state=None)

Randomly set channels to flat signal.

Part of the CMSAugment policy proposed in [1]

Parameters
Xtorch.Tensor

EEG input example or batch.

ytorch.Tensor

EEG labels for the example or batch.

p_dropfloat

Float between 0 and 1 setting the probability of dropping each channel.

random_stateint | numpy.random.Generator, optional

Seed to be used to instantiate numpy random number generator instance. Defaults to None.

Returns
torch.Tensor

Transformed inputs.

torch.Tensor

Transformed labels.

References

1

Saeed, A., Grangier, D., Pietquin, O., & Zeghidour, N. (2020). Learning from Heterogeneous EEG Signals with Differentiable Channel Reordering. arXiv preprint arXiv:2010.13694.