braindecode.training.mixup_criterion¶
- braindecode.training.mixup_criterion(preds, target)¶
Implements loss for Mixup for EEG data. See [1].
Implementation based on [2].
- Parameters
- predstorch.Tensor
Predictions from the model.
- targettorch.Tensor | list of torch.Tensor
For predictions without mixup, the targets as a tensor. If mixup has been applied, a list containing the targets of the two mixed samples and the mixing coefficients as tensors.
- Returns
- lossfloat
The loss value.
References
- 1
Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz mixup: Beyond Empirical Risk Minimization Online: https://arxiv.org/abs/1710.09412
- 2
https://github.com/facebookresearch/mixup-cifar10/blob/master/train.py