braindecode.augmentation.Mixup¶
- class braindecode.augmentation.Mixup(alpha, beta_per_sample=False, random_state=None)¶
Implements Iterator for Mixup for EEG data. See [1]. Implementation based on [2].
- Parameters
- alpha: float
Mixup hyperparameter.
- beta_per_sample: bool (default=False)
By default, one mixing coefficient per batch is drawn from a beta distribution. If True, one mixing coefficient per sample is drawn.
- random_state: int | numpy.random.Generator, optional
Seed to be used to instantiate numpy random number generator instance. Defaults to None.
References
- 1
Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz (2018). mixup: Beyond Empirical Risk Minimization. In 2018 International Conference on Learning Representations (ICLR) Online: https://arxiv.org/abs/1710.09412
- 2
https://github.com/facebookresearch/mixup-cifar10/blob/master/train.py
Methods
- get_params(*batch)¶
Return transform parameters.
- Parameters
- Xtensor.Tensor
The data.
- ytensor.Tensor
The labels.
- Returns
- params: dict
Contains the values sampled uniformly between 0 and 1 setting the linear interpolation between examples (lam) and the shuffled indices of examples that are mixed into original examples (idx_perm).
- static operation(X, y, lam, idx_perm)¶
Mixes two channels of EEG data.
See [1] for details. Implementation based on [2].
- Parameters
- Xtorch.Tensor
EEG data in form
batch_size, n_channels, n_times
- ytorch.Tensor
Target of length
batch_size
- lamtorch.Tensor
Values between 0 and 1 setting the linear interpolation between examples.
- idx_perm: torch.Tensor
Permuted indices of example that are mixed into original examples.
- Returns
- tuple
X
,y
. WhereX
is augmented andy
is a tuple of length 3 containing the labels of the two mixed channels and the mixing coefficient.
References
- 1
Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz (2018). mixup: Beyond Empirical Risk Minimization. In 2018 International Conference on Learning Representations (ICLR) Online: https://arxiv.org/abs/1710.09412
- 2
https://github.com/facebookresearch/mixup-cifar10/blob/master/train.py