braindecode.augmentation.functional.channels_dropout

braindecode.augmentation.functional.channels_dropout(X, y, p_drop, random_state=None)

Randomly set channels to flat signal.

Part of the CMSAugment policy proposed in [1]

Parameters
Xtorch.Tensor

EEG input example or batch.

ytorch.Tensor

EEG labels for the example or batch.

p_dropfloat

Float between 0 and 1 setting the probability of dropping each channel.

random_stateint | numpy.random.Generator, optional

Seed to be used to instantiate numpy random number generator instance. Defaults to None.

Returns
torch.Tensor

Transformed inputs.

torch.Tensor

Transformed labels.

References

1

Saeed, A., Grangier, D., Pietquin, O., & Zeghidour, N. (2020). Learning from Heterogeneous EEG Signals with Differentiable Channel Reordering. arXiv preprint arXiv:2010.13694.