braindecode.models.SleepStagerChambon2018

class braindecode.models.SleepStagerChambon2018(n_channels, sfreq, n_conv_chs=8, time_conv_size_s=0.5, max_pool_size_s=0.125, pad_size_s=0.25, input_size_s=30, n_classes=5, dropout=0.25, apply_batch_norm=False, return_feats=False)

Sleep staging architecture from Chambon et al 2018.

Convolutional neural network for sleep staging described in [Chambon2018].

Parameters
n_channelsint

Number of EEG channels.

sfreqfloat

EEG sampling frequency.

n_conv_chsint

Number of convolutional channels. Set to 8 in [Chambon2018].

time_conv_size_sfloat

Size of filters in temporal convolution layers, in seconds. Set to 0.5 in [Chambon2018] (64 samples at sfreq=128).

max_pool_size_sfloat

Max pooling size, in seconds. Set to 0.125 in [Chambon2018] (16 samples at sfreq=128).

pad_size_sfloat

Padding size, in seconds. Set to 0.25 in [Chambon2018] (half the temporal convolution kernel size).

input_size_sfloat

Size of the input, in seconds.

n_classesint

Number of classes.

dropoutfloat

Dropout rate before the output dense layer.

apply_batch_normbool

If True, apply batch normalization after both temporal convolutional layers.

return_featsbool

If True, return the features, i.e. the output of the feature extractor (before the final linear layer). If False, pass the features through the final linear layer.

References

Chambon2018(1,2,3,4,5)

Chambon, S., Galtier, M. N., Arnal, P. J., Wainrib, G., & Gramfort, A. (2018). A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(4), 758-769.

Methods

forward(x)

Forward pass.

Parameters
x: torch.Tensor

Batch of EEG windows of shape (batch_size, n_channels, n_times).

Examples using braindecode.models.SleepStagerChambon2018