Split Dataset Example

In this example, we show multiple ways of how to split datasets.

# Authors: Lukas Gemein <l.gemein@gmail.com>
#
# License: BSD (3-clause)

from braindecode.datasets import MOABBDataset
from braindecode.preprocessing import create_windows_from_events

First, we create a dataset based on BCIC IV 2a fetched with MOABB,

dataset = MOABBDataset(dataset_name="BNCI2014001", subject_ids=[1])

Out:

48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]
48 events found
Event IDs: [1 2 3 4]

ds has a pandas DataFrame with additional description of its internal datasets

dataset.description
subject session run
0 1 session_T run_0
1 1 session_T run_1
2 1 session_T run_2
3 1 session_T run_3
4 1 session_T run_4
5 1 session_T run_5
6 1 session_E run_0
7 1 session_E run_1
8 1 session_E run_2
9 1 session_E run_3
10 1 session_E run_4
11 1 session_E run_5


We can split the dataset based on the info in the description, for example based on different runs. The returned dictionary will have string keys corresponding to unique entries in the description DataFrame column

splits = dataset.split("run")
print(splits)
splits["run_4"].description

Out:

{'run_0': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490b1f210>, 'run_1': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490e93810>, 'run_2': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490b21890>, 'run_3': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490b25410>, 'run_4': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490bc2950>, 'run_5': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748c1a5f50>}
subject session run
0 1 session_T run_4
1 1 session_E run_4


We can also split the dataset based on a list of integers corresponding to rows in the description. In this case, the returned dictionary will have ‘0’ as the only key

splits = dataset.split([0, 1, 5])
print(splits)
splits["0"].description

Out:

{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748c6bbb90>}
subject session run
0 1 session_T run_0
1 1 session_T run_1
2 1 session_T run_5


If we want multiple splits based on indices, we can also specify a list of list of integers. In this case, the dictionary will have string keys representing the id of the dataset split in the order of the given list of integers

splits = dataset.split([[0, 1, 5], [2, 3, 4], [6, 7, 8, 9, 10, 11]])
print(splits)
splits["2"].description

Out:

{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490b25410>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490b49e90>, '2': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748ee50590>}
subject session run
0 1 session_E run_0
1 1 session_E run_1
2 1 session_E run_2
3 1 session_E run_3
4 1 session_E run_4
5 1 session_E run_5


If we want to split based on a list of indices but you want to specify the keys in the output dictionary you can pass a dict as:

splits = dataset.split(
    {"train": [0, 1, 5], "valid": [2, 3, 4], "test": [6, 7, 8, 9, 10, 11]}
)
print(splits)
splits["test"].description

Out:

{'train': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748c1a5f50>, 'valid': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748ee506d0>, 'test': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748ee50450>}
subject session run
0 1 session_E run_0
1 1 session_E run_1
2 1 session_E run_2
3 1 session_E run_3
4 1 session_E run_4
5 1 session_E run_5


Similarly, we can split datasets after creating windows

windows = create_windows_from_events(
    dataset, trial_start_offset_samples=0, trial_stop_offset_samples=0)
splits = windows.split("run")
splits

Out:

Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Adding metadata with 4 columns
Replacing existing metadata with 4 columns
48 matching events found
No baseline correction applied
0 projection items activated
Loading data for 48 events and 1000 original time points ...
0 bad epochs dropped

{'run_0': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490b8f110>, 'run_1': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748c19ef10>, 'run_2': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748ee22910>, 'run_3': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748ee22350>, 'run_4': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490b853d0>, 'run_5': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490b40450>}

Out:

{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490e80d90>}
splits = windows.split([[4, 8], [5, 9, 11]])
splits

Out:

{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490e93810>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x7f7490b1f210>}
splits = windows.split(dict(train=[4, 8], test=[5, 9, 11]))
splits

Out:

{'train': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748c19e6d0>, 'test': <braindecode.datasets.base.BaseConcatDataset object at 0x7f748c19eb10>}

Total running time of the script: ( 0 minutes 4.236 seconds)

Estimated memory usage: 354 MB

Gallery generated by Sphinx-Gallery