.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/plot_dataset_example.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_plot_dataset_example.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_plot_dataset_example.py:

MOABB Dataset Example
========================

In this example, we show how to fetch and prepare a MOABB dataset for usage
with Braindecode.

.. GENERATED FROM PYTHON SOURCE LINES 7-21

.. code-block:: default


    # Authors: Lukas Gemein <l.gemein@gmail.com>
    #          Hubert Banville <hubert.jbanville@gmail.com>
    #          Simon Brandt <simonbrandt@protonmail.com>
    #
    # License: BSD (3-clause)

    import matplotlib.pyplot as plt

    from braindecode.datasets import MOABBDataset
    from braindecode.preprocessing import \
        create_windows_from_events, create_fixed_length_windows
    from braindecode.preprocessing import preprocess, Preprocessor








.. GENERATED FROM PYTHON SOURCE LINES 22-23

First, we create a dataset based on BCIC IV 2a fetched with MOABB,

.. GENERATED FROM PYTHON SOURCE LINES 23-25

.. code-block:: default

    dataset = MOABBDataset(dataset_name="BNCI2014001", subject_ids=[1])








.. GENERATED FROM PYTHON SOURCE LINES 26-27

ds has a pandas DataFrame with additional description of its internal datasets

.. GENERATED FROM PYTHON SOURCE LINES 27-29

.. code-block:: default

    dataset.description






.. raw:: html

    <div class="output_subarea output_html rendered_html output_result">
    <div>
    <style scoped>
        .dataframe tbody tr th:only-of-type {
            vertical-align: middle;
        }

        .dataframe tbody tr th {
            vertical-align: top;
        }

        .dataframe thead th {
            text-align: right;
        }
    </style>
    <table border="1" class="dataframe">
      <thead>
        <tr style="text-align: right;">
          <th></th>
          <th>subject</th>
          <th>session</th>
          <th>run</th>
        </tr>
      </thead>
      <tbody>
        <tr>
          <th>0</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_0</td>
        </tr>
        <tr>
          <th>1</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_1</td>
        </tr>
        <tr>
          <th>2</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_2</td>
        </tr>
        <tr>
          <th>3</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_3</td>
        </tr>
        <tr>
          <th>4</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_4</td>
        </tr>
        <tr>
          <th>5</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_5</td>
        </tr>
        <tr>
          <th>6</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_0</td>
        </tr>
        <tr>
          <th>7</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_1</td>
        </tr>
        <tr>
          <th>8</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_2</td>
        </tr>
        <tr>
          <th>9</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_3</td>
        </tr>
        <tr>
          <th>10</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_4</td>
        </tr>
        <tr>
          <th>11</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_5</td>
        </tr>
      </tbody>
    </table>
    </div>
    </div>
    <br />
    <br />

.. GENERATED FROM PYTHON SOURCE LINES 30-33

We can iterate through ds which yields one time point of a continuous signal x,
and a target y (which can be None if targets are not defined for the entire
continuous signal).

.. GENERATED FROM PYTHON SOURCE LINES 33-37

.. code-block:: default

    for x, y in dataset:
        print(x.shape, y)
        break





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    (26, 1) None




.. GENERATED FROM PYTHON SOURCE LINES 38-40

We can apply preprocessing transforms that are defined in mne and work
in-place, such as resampling, bandpass filtering, or electrode selection.

.. GENERATED FROM PYTHON SOURCE LINES 40-48

.. code-block:: default

    preprocessors = [
        Preprocessor('pick_types', eeg=True, meg=False, stim=True),
        Preprocessor('resample', sfreq=100)
    ]
    print(dataset.datasets[0].raw.info["sfreq"])
    preprocess(dataset, preprocessors)
    print(dataset.datasets[0].raw.info["sfreq"])





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    250.0
    100.0




.. GENERATED FROM PYTHON SOURCE LINES 49-51

We can easily split ds based on a criteria applied to the description
DataFrame:

.. GENERATED FROM PYTHON SOURCE LINES 51-54

.. code-block:: default

    subsets = dataset.split("session")
    print({subset_name: len(subset) for subset_name, subset in subsets.items()})





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    {'session_E': 232164, 'session_T': 232164}




.. GENERATED FROM PYTHON SOURCE LINES 55-56

Next, we use a windower to extract events from the dataset based on events:

.. GENERATED FROM PYTHON SOURCE LINES 56-61

.. code-block:: default

    windows_dataset = create_windows_from_events(
        dataset, trial_start_offset_samples=0, trial_stop_offset_samples=100,
        window_size_samples=400, window_stride_samples=100,
        drop_last_window=False)








.. GENERATED FROM PYTHON SOURCE LINES 62-66

We can iterate through the windows_ds which yields a window x,
a target y, and window_ind (which itself contains ``i_window_in_trial``,
``i_start_in_trial``, and ``i_stop_in_trial``, which are required for
combining window predictions in the scorer).

.. GENERATED FROM PYTHON SOURCE LINES 66-70

.. code-block:: default

    for x, y, window_ind in windows_dataset:
        print(x.shape, y, window_ind)
        break





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    (23, 400) 3 [0, 300, 700]




.. GENERATED FROM PYTHON SOURCE LINES 71-72

We visually inspect the windows:

.. GENERATED FROM PYTHON SOURCE LINES 72-84

.. code-block:: default

    max_i = 2
    fig, ax_arr = plt.subplots(1, max_i + 1, figsize=(3.5 * (max_i + 1), 3.5),
                               sharex=True, sharey=True)
    for i, (x, y, window_ind) in enumerate(windows_dataset):
        ax_arr[i].plot(x.T)
        ax_arr[i].set_ylim(-4e-5, 4e-5)
        ax_arr[i].set_title(f"label={y}")
        if i == max_i:
            break

    fig.tight_layout()




.. image-sg:: /auto_examples/images/sphx_glr_plot_dataset_example_001.png
   :alt: label=3, label=3, label=0
   :srcset: /auto_examples/images/sphx_glr_plot_dataset_example_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 85-87

Alternatively, we can create evenly spaced ("sliding") windows using a
different windower.

.. GENERATED FROM PYTHON SOURCE LINES 87-99

.. code-block:: default

    sliding_windows_dataset = create_fixed_length_windows(
        dataset, start_offset_samples=0, stop_offset_samples=0,
        window_size_samples=1200, window_stride_samples=1000,
        drop_last_window=False)

    print(len(sliding_windows_dataset))
    for x, y, window_ind in sliding_windows_dataset:
        print(x.shape, y, window_ind)
        break

    sliding_windows_dataset.description





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    /home/runner/work/braindecode/braindecode/braindecode/preprocessing/windowers.py:597: UserWarning: Meaning of `trial_stop_offset_samples`=0 has changed, use `None` to indicate end of trial/recording. Using `None`.
      'Meaning of `trial_stop_offset_samples`=0 has changed, use `None` '
    468
    (23, 1200) -1 [0, 0, 1200]


.. raw:: html

    <div class="output_subarea output_html rendered_html output_result">
    <div>
    <style scoped>
        .dataframe tbody tr th:only-of-type {
            vertical-align: middle;
        }

        .dataframe tbody tr th {
            vertical-align: top;
        }

        .dataframe thead th {
            text-align: right;
        }
    </style>
    <table border="1" class="dataframe">
      <thead>
        <tr style="text-align: right;">
          <th></th>
          <th>subject</th>
          <th>session</th>
          <th>run</th>
        </tr>
      </thead>
      <tbody>
        <tr>
          <th>0</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_0</td>
        </tr>
        <tr>
          <th>1</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_1</td>
        </tr>
        <tr>
          <th>2</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_2</td>
        </tr>
        <tr>
          <th>3</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_3</td>
        </tr>
        <tr>
          <th>4</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_4</td>
        </tr>
        <tr>
          <th>5</th>
          <td>1</td>
          <td>session_T</td>
          <td>run_5</td>
        </tr>
        <tr>
          <th>6</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_0</td>
        </tr>
        <tr>
          <th>7</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_1</td>
        </tr>
        <tr>
          <th>8</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_2</td>
        </tr>
        <tr>
          <th>9</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_3</td>
        </tr>
        <tr>
          <th>10</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_4</td>
        </tr>
        <tr>
          <th>11</th>
          <td>1</td>
          <td>session_E</td>
          <td>run_5</td>
        </tr>
      </tbody>
    </table>
    </div>
    </div>
    <br />
    <br />

.. GENERATED FROM PYTHON SOURCE LINES 100-102

Transforms can also be applied on windows in the same way as shown
above on continuous data:

.. GENERATED FROM PYTHON SOURCE LINES 102-136

.. code-block:: default



    def crop_windows(windows, start_offset_samples, stop_offset_samples):
        fs = windows.info["sfreq"]
        windows.crop(tmin=start_offset_samples / fs, tmax=stop_offset_samples / fs,
                     include_tmax=False)


    epochs_preprocessors = [
        Preprocessor('pick_types', eeg=True, meg=False, stim=False),
        Preprocessor(crop_windows, apply_on_array=False, start_offset_samples=100,
                     stop_offset_samples=900)
    ]

    print(windows_dataset.datasets[0].windows.info["ch_names"],
          len(windows_dataset.datasets[0].windows.times))
    preprocess(windows_dataset, epochs_preprocessors)
    print(windows_dataset.datasets[0].windows.info["ch_names"],
          len(windows_dataset.datasets[0].windows.times))


    max_i = 2
    fig, ax_arr = plt.subplots(1, max_i + 1, figsize=(3.5 * (max_i + 1), 3.5),
                               sharex=True, sharey=True)
    for i, (x, y, window_ind) in enumerate(windows_dataset):
        ax_arr[i].plot(x.T)
        ax_arr[i].set_ylim(-4e-5, 4e-5)
        ax_arr[i].set_title(f"label={y}")
        if i == max_i:
            break

    fig.tight_layout()
    plt.show()




.. image-sg:: /auto_examples/images/sphx_glr_plot_dataset_example_002.png
   :alt: label=3, label=3, label=0
   :srcset: /auto_examples/images/sphx_glr_plot_dataset_example_002.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    ['Fz', 'FC3', 'FC1', 'FCz', 'FC2', 'FC4', 'C5', 'C3', 'C1', 'Cz', 'C2', 'C4', 'C6', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'P1', 'Pz', 'P2', 'POz', 'stim'] 400
    ['Fz', 'FC3', 'FC1', 'FCz', 'FC2', 'FC4', 'C5', 'C3', 'C1', 'Cz', 'C2', 'C4', 'C6', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'P1', 'Pz', 'P2', 'POz'] 300




.. GENERATED FROM PYTHON SOURCE LINES 137-139

Again, we can easily split windows_ds based on some criteria in the
description DataFrame:

.. GENERATED FROM PYTHON SOURCE LINES 139-141

.. code-block:: default

    subsets = windows_dataset.split("session")
    print({subset_name: len(subset) for subset_name, subset in subsets.items()})




.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    {'session_E': 576, 'session_T': 576}





.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  8.463 seconds)

**Estimated memory usage:**  371 MB


.. _sphx_glr_download_auto_examples_plot_dataset_example.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: plot_dataset_example.py <plot_dataset_example.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: plot_dataset_example.ipynb <plot_dataset_example.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_