Split Dataset Example#

In this example, we aim to show multiple ways of how you can split your datasets for training, testing, and evaluating your models.

# Authors: Lukas Gemein <l.gemein@gmail.com>
#
# License: BSD (3-clause)

from braindecode.datasets import MOABBDataset
from braindecode.preprocessing import create_windows_from_events

Loading the dataset#

Firstly, we create a dataset using the braindecode class <MOABBDataset> to load it fetched from MOABB. In this example, we’re using Dataset 2a from BCI Competition IV.

dataset = MOABBDataset(dataset_name="BNCI2014001", subject_ids=[1])
BNCI2014001 has been renamed to BNCI2014_001. BNCI2014001 will be removed in version 1.1.
The dataset class name 'BNCI2014001' must be an abbreviation of its code 'BNCI2014-001'. See moabb.datasets.base.is_abbrev for more information.
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]
48 events found on stim channel stim
Event IDs: [1 2 3 4]

Splitting#

By description information#

The class <MOABBDataset> has a pandas DataFrame containing additional description of its internal datasets, which can be used to help splitting the data based on recording information, such as subject, session, and run of each trial.

dataset.description
subject session run
0 1 0train 0
1 1 0train 1
2 1 0train 2
3 1 0train 3
4 1 0train 4
5 1 0train 5
6 1 1test 0
7 1 1test 1
8 1 1test 2
9 1 1test 3
10 1 1test 4
11 1 1test 5


Here, we’re splitting the data based on different runs. The method split returns a dictionary with string keys corresponding to unique entries in the description DataFrame column.

splits = dataset.split("run")
print(splits)
splits["4"].description
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9a45f60>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9a45b70>, '2': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9ff9330>, '3': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9c65930>, '4': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7ea07b070>, '5': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7ea3ca8c0>}
subject session run
0 1 0train 4
1 1 1test 4


By row index#

Another way we can split the dataset is based on a list of integers corresponding to rows in the description. In this case, the returned dictionary will have ‘0’ as the only key.

splits = dataset.split([0, 1, 5])
print(splits)
splits["0"].description
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7ea5155a0>}
subject session run
0 1 0train 0
1 1 0train 1
2 1 0train 5


However, if we want multiple splits based on indices, we can also define a list containing lists of integers. In this case, the dictionary will have string keys representing the index of the dataset split in the order of the given list of integers.

splits = dataset.split([[0, 1, 5], [2, 3, 4], [6, 7, 8, 9, 10, 11]])
print(splits)
splits["2"].description
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe8ba960b20>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9a46650>, '2': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9c30760>}
subject session run
0 1 1test 0
1 1 1test 1
2 1 1test 2
3 1 1test 3
4 1 1test 4
5 1 1test 5


You can also name each split in the output dictionary by specifying the keys of each list of indexes in the input dictionary:

splits = dataset.split(
    {"train": [0, 1, 5], "valid": [2, 3, 4], "test": [6, 7, 8, 9, 10, 11]}
)
print(splits)
splits["test"].description
{'train': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7ea3cba30>, 'valid': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7ea3cb220>, 'test': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9c65780>}
subject session run
0 1 1test 0
1 1 1test 1
2 1 1test 2
3 1 1test 3
4 1 1test 4
5 1 1test 5


Observation#

Similarly, we can split datasets after creating windows using the same methods.

windows = create_windows_from_events(
    dataset, trial_start_offset_samples=0, trial_stop_offset_samples=0
)
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
# Splitting by different runs
print("Using description info")
splits = windows.split("run")
print(splits)
print()

# Splitting by row index
print("Splitting by row index")
splits = windows.split([4, 8])
print(splits)
print()

print("Multiple row index split")
splits = windows.split([[4, 8], [5, 9, 11]])
print(splits)
print()

# Specifying output's keys
print("Specifying keys")
splits = windows.split(dict(train=[4, 8], test=[5, 9, 11]))
print(splits)
Using description info
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9c30760>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7eaa9a560>, '2': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7eaa9ac20>, '3': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7eaa9bd30>, '4': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9ff9330>, '5': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7eac317b0>}

Splitting by row index
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7ea515240>}

Multiple row index split
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7eaa9bd30>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7eaa9ac20>}

Specifying keys
{'train': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7eaa9a560>, 'test': <braindecode.datasets.base.BaseConcatDataset object at 0x7fe7e9c30760>}

Total running time of the script: (0 minutes 3.433 seconds)

Estimated memory usage: 996 MB

Gallery generated by Sphinx-Gallery