braindecode.preprocessing.preprocess#
- braindecode.preprocessing.preprocess(concat_ds, preprocessors, save_dir=None, overwrite=False, n_jobs=None)[source]#
Apply preprocessors to a concat dataset.
- Parameters
concat_ds (BaseConcatDataset) – A concat of BaseDataset or WindowsDataset datasets to be preprocessed.
preprocessors (list(Preprocessor)) – List of Preprocessor objects to apply to the dataset.
save_dir (str | None) – If a string, the preprocessed data will be saved under the specified directory and the datasets in
concat_ds
will be reloaded with preload=False.overwrite (bool) – When save_dir is provided, controls whether to delete the old subdirectories that will be written to under save_dir. If False and the corresponding subdirectories already exist, a
FileExistsError
will be raised.n_jobs (int | None) – Number of jobs for parallel execution.
- Returns
Preprocessed dataset.
- Return type
Examples using braindecode.preprocessing.preprocess
#
Benchmarking preprocessing with parallelization and serialization
Hyperparameter tuning with scikit-learn
Process a big data EEG resource (TUH EEG Corpus)
Sleep staging on the Sleep Physionet dataset using U-Sleep network
Data Augmentation on BCIC IV 2a Dataset
Sleep staging on the Sleep Physionet dataset using Eldele2021
Sleep staging on the Sleep Physionet dataset using Chambon2018 network
Searching the best data augmentation on BCIC IV 2a Dataset
Trialwise Decoding on BCIC IV 2a Dataset
Fingers flexion decoding on BCIC IV 4 ECoG Dataset
Fingers flexion cropped decoding on BCIC IV 4 ECoG Dataset
Cropped Decoding on BCIC IV 2a Dataset
Self-supervised learning on EEG with relative positioning
How to train, test and tune your model