braindecode.models.TCN#
- class braindecode.models.TCN(n_in_chans, n_outputs, n_blocks, n_filters, kernel_size, drop_prob, add_log_softmax)[source]#
Temporal Convolutional Network (TCN) from Bai et al 2018.
See [Bai2018] for details.
Code adapted from locuslab/TCN
- Parameters
n_in_chans (int) – number of input EEG channels
n_outputs (int) – number of outputs of the decoding task (for example number of classes in classification)
n_filters (int) – number of output filters of each convolution
n_blocks (int) – number of temporal blocks in the network
kernel_size (int) – kernel size of the convolutions
drop_prob (float) – dropout probability
add_log_softmax (bool) – whether to add a log softmax layer
References
- Bai2018
Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
Methods
- forward(x)[source]#
Forward pass.
- Parameters
x (torch.Tensor) – Batch of EEG windows of shape (batch_size, n_channels, n_times).