braindecode.models.EEGNetv4#
- class braindecode.models.EEGNetv4(in_chans, n_classes, input_window_samples=None, final_conv_length='auto', pool_mode='mean', F1=8, D=2, F2=16, kernel_length=64, third_kernel_size=(8, 4), drop_prob=0.25)[source]#
EEGNet v4 model from Lawhern et al 2018.
See details in [EEGNet4].
- Parameters
in_chans (int) – XXX
Notes
This implementation is not guaranteed to be correct, has not been checked by original authors, only reimplemented from the paper description.
References
- EEGNet4
Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces. arXiv preprint arXiv:1611.08024.