braindecode.models.EEGNetv4#

class braindecode.models.EEGNetv4(in_chans, n_classes, input_window_samples=None, final_conv_length='auto', pool_mode='mean', F1=8, D=2, F2=16, kernel_length=64, third_kernel_size=(8, 4), drop_prob=0.25)[source]#

EEGNet v4 model from Lawhern et al 2018.

See details in [EEGNet4].

Parameters

in_chans (int) – XXX

Notes

This implementation is not guaranteed to be correct, has not been checked by original authors, only reimplemented from the paper description.

References

EEGNet4

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces. arXiv preprint arXiv:1611.08024.