Split Dataset Example#

In this example, we aim to show multiple ways of how you can split your datasets for training, testing, and evaluating your models.

# Authors: Lukas Gemein <l.gemein@gmail.com>
#
# License: BSD (3-clause)

from braindecode.datasets import MOABBDataset
from braindecode.preprocessing import create_windows_from_events

Loading the dataset#

Firstly, we create a dataset using the braindecode MOABBDataset to load it fetched from MOABB. In this example, we’re using Dataset 2a from BCI Competition IV.

dataset = MOABBDataset(dataset_name="BNCI2014001", subject_ids=[1])
BNCI2014001 has been renamed to BNCI2014_001. BNCI2014001 will be removed in version 1.1.
The dataset class name 'BNCI2014001' must be an abbreviation of its code 'BNCI2014-001'. See moabb.datasets.base.is_abbrev for more information.

Splitting#

By description information#

The class MOABBDataset has a pandas DataFrame containing additional description of its internal datasets, which can be used to help splitting the data based on recording information, such as subject, session, and run of each trial.

subject session run
0 1 0train 0
1 1 0train 1
2 1 0train 2
3 1 0train 3
4 1 0train 4
5 1 0train 5
6 1 1test 0
7 1 1test 1
8 1 1test 2
9 1 1test 3
10 1 1test 4
11 1 1test 5


Here, we’re splitting the data based on different runs. The method split returns a dictionary with string keys corresponding to unique entries in the description DataFrame column.

splits = dataset.split("run")
print(splits)
splits["4"].description
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x318818290>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x38f3c8980>, '2': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f1220>, '3': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f0a70>, '4': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f08f0>, '5': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f2060>}
subject session run
0 1 0train 4
1 1 1test 4


By row index#

Another way we can split the dataset is based on a list of integers corresponding to rows in the description. In this case, the returned dictionary will have ‘0’ as the only key.

splits = dataset.split([0, 1, 5])
print(splits)
splits["0"].description
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f39b0>}
subject session run
0 1 0train 0
1 1 0train 1
2 1 0train 5


However, if we want multiple splits based on indices, we can also define a list containing lists of integers. In this case, the dictionary will have string keys representing the index of the dataset split in the order of the given list of integers.

splits = dataset.split([[0, 1, 5], [2, 3, 4], [6, 7, 8, 9, 10, 11]])
print(splits)
splits["2"].description
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f0bc0>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f2f00>, '2': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f1130>}
subject session run
0 1 1test 0
1 1 1test 1
2 1 1test 2
3 1 1test 3
4 1 1test 4
5 1 1test 5


You can also name each split in the output dictionary by specifying the keys of each list of indexes in the input dictionary:

splits = dataset.split(
    {"train": [0, 1, 5], "valid": [2, 3, 4], "test": [6, 7, 8, 9, 10, 11]}
)
print(splits)
splits["test"].description
{'train': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f0800>, 'valid': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f27e0>, 'test': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f08c0>}
subject session run
0 1 1test 0
1 1 1test 1
2 1 1test 2
3 1 1test 3
4 1 1test 4
5 1 1test 5


Observation#

Similarly, we can split datasets after creating windows using the same methods.

windows = create_windows_from_events(
    dataset, trial_start_offset_samples=0, trial_stop_offset_samples=0
)
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
Used Annotations descriptions: ['feet', 'left_hand', 'right_hand', 'tongue']
# Splitting by different runs
print("Using description info")
splits = windows.split("run")
print(splits)
print()

# Splitting by row index
print("Splitting by row index")
splits = windows.split([4, 8])
print(splits)
print()

print("Multiple row index split")
splits = windows.split([[4, 8], [5, 9, 11]])
print(splits)
print()

# Specifying output's keys
print("Specifying keys")
splits = windows.split(dict(train=[4, 8], test=[5, 9, 11]))
print(splits)
Using description info
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x3e3ce5370>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f2720>, '2': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f39b0>, '3': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f3c80>, '4': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f10a0>, '5': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f0230>}

Splitting by row index
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f2060>}

Multiple row index split
{'0': <braindecode.datasets.base.BaseConcatDataset object at 0x32f15d1c0>, '1': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f10a0>}

Specifying keys
{'train': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f2060>, 'test': <braindecode.datasets.base.BaseConcatDataset object at 0x38a9f08c0>}

Total running time of the script: (0 minutes 22.365 seconds)

Estimated memory usage: 509 MB

Gallery generated by Sphinx-Gallery