braindecode.preprocessing.preprocess#

braindecode.preprocessing.preprocess(concat_ds, preprocessors, save_dir=None, overwrite=False, n_jobs=None, offset=0, copy_data=None)[source]#

Apply preprocessors to a concat dataset.

Parameters:
  • concat_ds (BaseConcatDataset) – A concat of BaseDataset or WindowsDataset to be preprocessed.

  • preprocessors (list of Preprocessor) – Preprocessor objects to apply to each dataset.

  • save_dir (str | None) – If provided, save preprocessed data under this directory and reload datasets in concat_ds with preload=False.

  • overwrite (bool) – When save_dir is provided, controls whether to delete the old subdirectories that will be written to under save_dir. If False and the corresponding subdirectories already exist, a FileExistsError is raised.

  • n_jobs (int | None) – Number of jobs for parallel execution. See joblib.Parallel for details.

  • offset (int) – Integer added to the dataset id in the concat. Useful when processing and saving very large datasets in chunks to preserve original positions.

  • copy_data (bool | None) – Whether the data passed to parallel jobs should be copied or passed by reference.

Returns:

Preprocessed dataset.

Return type:

BaseConcatDataset

Examples using braindecode.preprocessing.preprocess#

Cropped Decoding on BCIC IV 2a Dataset

Cropped Decoding on BCIC IV 2a Dataset

Basic Brain Decoding on EEG Data

Basic Brain Decoding on EEG Data

How to train, test and tune your model?

How to train, test and tune your model?

Hyperparameter tuning with scikit-learn

Hyperparameter tuning with scikit-learn

Training a Braindecode model in PyTorch

Training a Braindecode model in PyTorch

Benchmarking preprocessing with parallelization and serialization

Benchmarking preprocessing with parallelization and serialization

Load and save dataset example

Load and save dataset example

MOABB Dataset Example

MOABB Dataset Example

Fingers flexion cropped decoding on BCIC IV 4 ECoG Dataset

Fingers flexion cropped decoding on BCIC IV 4 ECoG Dataset

Data Augmentation on BCIC IV 2a Dataset

Data Augmentation on BCIC IV 2a Dataset

Searching the best data augmentation on BCIC IV 2a Dataset

Searching the best data augmentation on BCIC IV 2a Dataset

Self-supervised learning on EEG with relative positioning

Self-supervised learning on EEG with relative positioning

Fingers flexion decoding on BCIC IV 4 ECoG Dataset

Fingers flexion decoding on BCIC IV 4 ECoG Dataset

Sleep staging on the Sleep Physionet dataset using Chambon2018 network

Sleep staging on the Sleep Physionet dataset using Chambon2018 network

Sleep staging on the Sleep Physionet dataset using Eldele2021

Sleep staging on the Sleep Physionet dataset using Eldele2021

Sleep staging on the Sleep Physionet dataset using U-Sleep network

Sleep staging on the Sleep Physionet dataset using U-Sleep network

Process a big data EEG resource (TUH EEG Corpus)

Process a big data EEG resource (TUH EEG Corpus)