.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/plot_bcic_iv_4_ecog_trial.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_plot_bcic_iv_4_ecog_trial.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_plot_bcic_iv_4_ecog_trial.py:


Fingers flexion decoding on BCIC IV 4 ECoG Dataset
==================================================

This tutorial shows you how to train and test deep learning models with
Braindecode on ECoG BCI IV competition dataset 4. For this dataset we will
predict 5 regression targets corresponding to flexion of each finger.
The targets were recorded as a time series (each 25 Hz), so this tutorial is
an example of time series target prediction.

.. GENERATED FROM PYTHON SOURCE LINES 11-17

.. code-block:: default


    # Authors: Maciej Sliwowski <maciek.sliwowski@gmail.com>
    #          Mohammed Fattouh <mo.fattouh@gmail.com>
    #
    # License: BSD (3-clause)








.. GENERATED FROM PYTHON SOURCE LINES 18-21

Loading and preparing the dataset
-------------------------------------


.. GENERATED FROM PYTHON SOURCE LINES 24-27

Loading
~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 30-44

First, we load the data. In this tutorial, we use the functionality of braindecode
to load `BCI IV competition dataset 4 <http://www.bbci.de/competition/iv/#dataset4>`__.
The dataset is available as a part of ECoG library:
https://searchworks.stanford.edu/view/zk881ps0522

The dataset contains ECoG signal and time series of 5 targets corresponding
to each finger flexion. This is different than standard decoding setup for EEG with
multiple trials and usually one target per trial. Here, fingers flexions change in time
and are recorded with sampling frequency equals to 25 Hz.

If this dataset is used please cite [1].

[1] Miller, Kai J. "A library of human electrocorticographic data and analyses.
"Nature human behaviour 3, no. 11 (2019): 1225-1235. https://doi.org/10.1038/s41562-019-0678-3

.. GENERATED FROM PYTHON SOURCE LINES 44-54

.. code-block:: default



    import numpy as np

    from braindecode.datasets import BCICompetitionIVDataset4

    subject_id = 1
    dataset = BCICompetitionIVDataset4(subject_ids=[subject_id])









.. GENERATED FROM PYTHON SOURCE LINES 55-58

Preprocessing
~~~~~~~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 61-79

Now we apply preprocessing like bandpass filtering to our dataset. You
can either apply functions provided by
`mne.Raw <https://mne.tools/stable/generated/mne.io.Raw.html>`__ or
`mne.Epochs <https://mne.tools/0.11/generated/mne.Epochs.html#mne.Epochs>`__
or apply your own functions, either to the MNE object or the underlying
numpy array.

.. note::
   Preprocessing steps are taken from a standard EEG processing pipeline.
   The only change is the cutoff frequency of the filter. For a proper ECoG
   decoding other preprocessing steps may be needed.

.. note::
   These prepocessings are now directly applied to the loaded
   data, and not on-the-fly applied as transformations in
   PyTorch-libraries like
   `torchvision <https://pytorch.org/docs/stable/torchvision/index.html>`__.


.. GENERATED FROM PYTHON SOURCE LINES 79-90

.. code-block:: default



    from braindecode.preprocessing import (
        exponential_moving_standardize, preprocess, Preprocessor)

    low_cut_hz = 1.  # low cut frequency for filtering
    high_cut_hz = 200.  # high cut frequency for filtering, for ECoG higher than for EEG
    # Parameters for exponential moving standardization
    factor_new = 1e-3
    init_block_size = 1000








.. GENERATED FROM PYTHON SOURCE LINES 91-93

We select only first 30 seconds from each dataset to limit time and memory
to run this example. To obtain results on the whole datasets you should remove this line.

.. GENERATED FROM PYTHON SOURCE LINES 93-95

.. code-block:: default

    preprocess(dataset, [Preprocessor('crop', tmin=0, tmax=30)])





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none


    <braindecode.datasets.bcicomp.BCICompetitionIVDataset4 object at 0x7f748e0c9b10>



.. GENERATED FROM PYTHON SOURCE LINES 96-100

In time series targets setup, targets variables are stored in mne.Raw object as channels
of type `misc`. Thus those channels have to be selected for further processing. However,
many mne functions ignore `misc` channels and perform operations only on data channels
(see https://mne.tools/stable/glossary.html#term-data-channels).

.. GENERATED FROM PYTHON SOURCE LINES 100-118

.. code-block:: default

    preprocessors = [
        Preprocessor('pick_types', ecog=True, misc=True),
        Preprocessor(lambda x: x / 1e6, picks='ecog'),  # Convert from V to uV
        Preprocessor('filter', l_freq=low_cut_hz, h_freq=high_cut_hz),  # Bandpass filter
        Preprocessor(exponential_moving_standardize,  # Exponential moving standardization
                     factor_new=factor_new, init_block_size=init_block_size, picks='ecog')
    ]

    # Transform the data
    preprocess(dataset, preprocessors)

    # Extract sampling frequency, check that they are same in all datasets
    sfreq = dataset.datasets[0].raw.info['sfreq']
    assert all([ds.raw.info['sfreq'] == sfreq for ds in dataset.datasets])
    # Extract target sampling frequency
    target_sfreq = dataset.datasets[0].raw.info['temp']['target_sfreq']






.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    /home/runner/work/braindecode/braindecode/braindecode/preprocessing/preprocess.py:52: UserWarning: Preprocessing choices with lambda functions cannot be saved.
      warn('Preprocessing choices with lambda functions cannot be saved.')




.. GENERATED FROM PYTHON SOURCE LINES 119-122

Cut Compute Windows
~~~~~~~~~~~~~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 125-130

Now we cut out compute windows, the inputs for the deep networks during
training. In the case of trialwise decoding of time series targets, we just have to
decide about length windows that will be selected from the signal preceding each target.
We use different windowing function than in standard trialwise decoding as our targets
are stored as target channels in mne.Raw.

.. GENERATED FROM PYTHON SOURCE LINES 130-139

.. code-block:: default

    from braindecode.preprocessing import create_windows_from_target_channels

    windows_dataset = create_windows_from_target_channels(
        dataset,
        window_size_samples=1000,
        preload=False,
        last_target_only=True
    )








.. GENERATED FROM PYTHON SOURCE LINES 140-146

We select only the thumb's finger flexion to create one model per finger.

.. note::
   Methods to predict all 5 fingers flexion with the same model may be cnosidered as well.
   We encourage you to find your own way to use braindecode models to predict finers fexions.


.. GENERATED FROM PYTHON SOURCE LINES 146-149

.. code-block:: default

    windows_dataset.target_transform = lambda x: x[0: 1]









.. GENERATED FROM PYTHON SOURCE LINES 150-153

Split dataset into train, valid, and test
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 156-159

We can easily split the dataset using additional info stored in the
description attribute, in this case ``session`` column. We select `train` dataset
for training and validation and `test` for final evaluation.

.. GENERATED FROM PYTHON SOURCE LINES 159-164

.. code-block:: default


    subsets = windows_dataset.split('session')
    train_set = subsets['train']
    test_set = subsets['test']








.. GENERATED FROM PYTHON SOURCE LINES 165-167

We can split train dataset into training and validation datasets using
``sklearn.model_selection.train_test_split`` and ``torch.utils.data.Subset``.

.. GENERATED FROM PYTHON SOURCE LINES 167-179

.. code-block:: default

    import torch
    from sklearn.model_selection import train_test_split

    idx_train, idx_valid = train_test_split(np.arange(len(train_set)),
                                            random_state=100,
                                            test_size=0.2,
                                            shuffle=False)

    valid_set = torch.utils.data.Subset(train_set, idx_valid)
    train_set = torch.utils.data.Subset(train_set, idx_train)









.. GENERATED FROM PYTHON SOURCE LINES 180-183

Create model
------------


.. GENERATED FROM PYTHON SOURCE LINES 186-194

Now we create the deep learning model! Braindecode comes with some
predefined convolutional neural network architectures for raw
time-domain EEG. Here, we use the shallow ConvNet model from `Deep
learning with convolutional neural networks for EEG decoding and
visualization <https://arxiv.org/abs/1703.05051>`__. These models are
pure `PyTorch <https://pytorch.org>`__ deep learning models, therefore
to use your own model, it just has to be a normal PyTorch
`nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__.

.. GENERATED FROM PYTHON SOURCE LINES 194-237

.. code-block:: default



    from braindecode.util import set_random_seeds
    from braindecode.models import ShallowFBCSPNet

    cuda = torch.cuda.is_available()  # check if GPU is available, if True chooses to use it
    device = 'cuda' if cuda else 'cpu'
    if cuda:
        torch.backends.cudnn.benchmark = True
    # Set random seed to be able to roughly reproduce results
    # Note that with cudnn benchmark set to True, GPU indeterminism
    # may still make results substantially different between runs.
    # To obtain more consistent results at the cost of increased computation time,
    # you can set `cudnn_benchmark=False` in `set_random_seeds`
    # or remove `torch.backends.cudnn.benchmark = True`
    seed = 20200220
    set_random_seeds(seed=seed, cuda=cuda)

    n_out_chans = train_set[0][1].shape[0]
    # Extract number of chans and time steps from dataset
    n_chans = train_set[0][0].shape[0]
    input_window_samples = 1000  # 1 second long windows

    model = ShallowFBCSPNet(
        n_chans,
        n_out_chans,
        input_window_samples=input_window_samples,
        final_conv_length='auto',
    )

    # We are removing the softmax layer to make it a regression model
    new_model = torch.nn.Sequential()
    for name, module_ in model.named_children():
        if "softmax" in name:
            continue
        new_model.add_module(name, module_)
    model = new_model

    # Send model to GPU
    if cuda:
        model.cuda()









.. GENERATED FROM PYTHON SOURCE LINES 238-241

Training
--------


.. GENERATED FROM PYTHON SOURCE LINES 244-255

Now we train the network! EEGRegressor is a Braindecode object
responsible for managing the training of neural networks. It inherits
from skorch.NeuralNetRegressor, so the training logic is the same as in
`Skorch <https://skorch.readthedocs.io/en/stable/>`__.

.. note::
   In this tutorial, we use some default parameters that we
   have found to work well for EEG motor decoding, however we strongly
   encourage you to perform your own hyperparameter and preprocessing optimization using
   cross validation on your training data.


.. GENERATED FROM PYTHON SOURCE LINES 255-297

.. code-block:: default

    from skorch.callbacks import LRScheduler, EpochScoring
    from skorch.helper import predefined_split
    from mne import set_log_level

    from braindecode import EEGRegressor

    # These values we found good for shallow network for EEG MI decoding:
    lr = 0.0625 * 0.01
    weight_decay = 0
    batch_size = 64
    n_epochs = 8


    # Function to compute Pearson correlation coefficient
    def pearson_r_score(net, dataset, y):
        preds = net.predict(dataset)
        corr_coeffs = []
        for i in range(y.shape[1]):
            corr_coeffs.append(np.corrcoef(y[:, i], preds[:, i])[0, 1])
        return np.mean(corr_coeffs)


    regressor = EEGRegressor(
        model,
        criterion=torch.nn.MSELoss,
        optimizer=torch.optim.AdamW,
        train_split=predefined_split(valid_set),  # using valid_set for validation,
        optimizer__lr=lr,
        optimizer__weight_decay=weight_decay,
        batch_size=batch_size,
        callbacks=[
            'r2',
            ('valid_pearson_r', EpochScoring(pearson_r_score, lower_is_better=False, on_train=False,
                                             name='valid_pearson_r')),
            ('train_pearson_r', EpochScoring(pearson_r_score, lower_is_better=False, on_train=True,
                                             name='train_pearson_r')),
            ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
        ],
        device=device,
    )
    set_log_level(verbose='WARNING')








.. GENERATED FROM PYTHON SOURCE LINES 298-300

Model training for a specified number of epochs. ``y`` is None as it is already supplied
in the dataset.

.. GENERATED FROM PYTHON SOURCE LINES 300-302

.. code-block:: default

    regressor.fit(train_set, y=None, epochs=n_epochs)





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

      epoch    train_loss    train_pearson_r    train_r2    valid_loss    valid_pearson_r    valid_r2      lr      dur
    -------  ------------  -----------------  ----------  ------------  -----------------  ----------  ------  -------
          1        2.4961             0.1251     -0.8473        6.1610            -0.1187     -1.8179  0.0006  24.8218
          2        1.6229             0.3363      0.2706        3.9314            -0.0667     -0.7981  0.0006  23.7729
          3        1.2982             0.3714     -0.0212        4.7448             0.0528     -1.1702  0.0005  23.8098
          4        1.1409             0.4637      0.3976        4.0278             0.0354     -0.8422  0.0004  23.9282
          5        0.8905             0.5174      0.5585        3.6476             0.0274     -0.6683  0.0002  23.9742
          6        0.9764             0.4443      0.6028        3.6036             0.0376     -0.6482  0.0001  24.2238
          7        0.9495             0.5218      0.6253        3.5204             0.0418     -0.6102  0.0000  23.8633
          8        0.8375             0.5307      0.6251        3.5190             0.0452     -0.6095  0.0000  23.7094




.. GENERATED FROM PYTHON SOURCE LINES 303-304

Obtaining predictions and targets for the test, train, and validation dataset

.. GENERATED FROM PYTHON SOURCE LINES 304-311

.. code-block:: default

    preds_test = regressor.predict(test_set)
    y_test = np.stack([data[1] for data in test_set])
    preds_train = regressor.predict(train_set)
    y_train = np.stack([data[1] for data in train_set])
    preds_valid = regressor.predict(valid_set)
    y_valid = np.stack([data[1] for data in valid_set])








.. GENERATED FROM PYTHON SOURCE LINES 312-314

Plot Results
------------

.. GENERATED FROM PYTHON SOURCE LINES 317-325

We plot target and predicted finger flexion on training, validation, adn test sets.

.. note::
   The model is trained and validated on limited dataset (to decrease the time neded to run
   this example) which does not contain diverse dataset in terms of fingers flexions and may
   cause overfitting. To obtain better results use whole dataset as well as improve the decoding
   pipeline which may be not optimal for ECoG.


.. GENERATED FROM PYTHON SOURCE LINES 325-354

.. code-block:: default

    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D
    import pandas as pd

    plt.style.use('seaborn')
    fig, axes = plt.subplots(3, 1, figsize=(8, 9))

    axes[0].set_title('Training dataset')
    axes[0].plot(np.arange(0, y_train.shape[0]) / target_sfreq, y_train[:, 0], label='Target')
    axes[0].plot(np.arange(0, preds_train.shape[0]) / target_sfreq, preds_train[:, 0],
                 label='Predicted')
    axes[0].set_ylabel('Finger flexion')
    axes[0].legend()

    axes[1].set_title('Validation dataset')
    axes[1].plot(np.arange(0, y_valid.shape[0]) / target_sfreq, y_valid[:, 0], label='Target')
    axes[1].plot(np.arange(0, preds_valid.shape[0]) / target_sfreq, preds_valid[:, 0],
                 label='Predicted')
    axes[1].set_ylabel('Finger flexion')
    axes[1].legend()

    axes[2].set_title('Test dataset')
    axes[2].plot(np.arange(0, y_test.shape[0]) / target_sfreq, y_test[:, 0], label='Target')
    axes[2].plot(np.arange(0, preds_test.shape[0]) / target_sfreq, preds_test[:, 0], label='Predicted')
    axes[2].set_xlabel('Time [s]')
    axes[2].set_ylabel('Finger flexion')
    axes[2].legend()
    plt.tight_layout()




.. image-sg:: /auto_examples/images/sphx_glr_plot_bcic_iv_4_ecog_trial_001.png
   :alt: Training dataset, Validation dataset, Test dataset
   :srcset: /auto_examples/images/sphx_glr_plot_bcic_iv_4_ecog_trial_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 355-357

We can compute correlation coefficients for each finger


.. GENERATED FROM PYTHON SOURCE LINES 357-364

.. code-block:: default

    corr_coeffs = []
    for dim in range(y_test.shape[1]):
        corr_coeffs.append(
            np.corrcoef(preds_test[:, dim], y_test[:, dim])[0, 1]
        )
    print('Correlation coefficient for each dimension: ', np.round(corr_coeffs, 2))





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    Correlation coefficient for each dimension:  [0.07]




.. GENERATED FROM PYTHON SOURCE LINES 365-368

Now we use the history stored by Skorch throughout training to plot
accuracy and loss curves.
Extract loss and accuracy values for plotting from history object

.. GENERATED FROM PYTHON SOURCE LINES 368-395

.. code-block:: default

    results_columns = ['train_loss', 'valid_loss', 'train_pearson_r', 'valid_pearson_r']
    df = pd.DataFrame(regressor.history[:, results_columns], columns=results_columns,
                      index=regressor.history[:, 'epoch'])

    fig, ax1 = plt.subplots(figsize=(8, 4))
    df.loc[:, ['train_loss', 'valid_loss']].plot(
        ax=ax1, style=['-', ':'], marker='o', color='tab:blue', legend=False, fontsize=14)

    ax1.tick_params(axis='y', labelcolor='tab:blue', labelsize=14)
    ax1.set_ylabel("Loss", color='tab:blue', fontsize=14)

    ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis

    df.loc[:, ['train_pearson_r', 'valid_pearson_r']].plot(
        ax=ax2, style=['-', ':'], marker='o', color='tab:red', legend=False)
    ax2.tick_params(axis='y', labelcolor='tab:red', labelsize=14)
    ax2.set_ylabel("Pearson correlation coefficient", color='tab:red', fontsize=14)
    ax1.set_xlabel("Epoch", fontsize=14)

    # where some data has already been plotted to ax
    handles = []
    handles.append(Line2D([0], [0], color='black', linewidth=1, linestyle='-',
                          label='Train'))
    handles.append(Line2D([0], [0], color='black', linewidth=1, linestyle=':',
                          label='Valid'))
    plt.legend(handles, [h.get_label() for h in handles], fontsize=14, loc='center right')
    plt.tight_layout()



.. image-sg:: /auto_examples/images/sphx_glr_plot_bcic_iv_4_ecog_trial_002.png
   :alt: plot bcic iv 4 ecog trial
   :srcset: /auto_examples/images/sphx_glr_plot_bcic_iv_4_ecog_trial_002.png
   :class: sphx-glr-single-img






.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 4 minutes  47.171 seconds)

**Estimated memory usage:**  2742 MB


.. _sphx_glr_download_auto_examples_plot_bcic_iv_4_ecog_trial.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: plot_bcic_iv_4_ecog_trial.py <plot_bcic_iv_4_ecog_trial.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: plot_bcic_iv_4_ecog_trial.ipynb <plot_bcic_iv_4_ecog_trial.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_