.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/plot_bcic_iv_2a_moabb_trial.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_plot_bcic_iv_2a_moabb_trial.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_plot_bcic_iv_2a_moabb_trial.py:


Trialwise Decoding on BCIC IV 2a Dataset
========================================

This tutorial shows you how to train and test deep learning models with
Braindecode in a classical EEG setting: you have trials of data with
labels (e.g., Right Hand, Left Hand, etc.).

.. GENERATED FROM PYTHON SOURCE LINES 12-15

Loading and preprocessing the dataset
-------------------------------------


.. GENERATED FROM PYTHON SOURCE LINES 18-21

Loading
~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 24-35

First, we load the data. In this tutorial, we use the functionality of
braindecode to load datasets through
`MOABB <https://github.com/NeuroTechX/moabb>`__ to load the BCI
Competition IV 2a data.

.. note::
   To load your own datasets either via mne or from
   preprocessed X/y numpy arrays, see `MNE Dataset
   Tutorial <./plot_mne_dataset_example.html>`__ and `Numpy Dataset
   Tutorial <./plot_custom_dataset_example.html>`__.


.. GENERATED FROM PYTHON SOURCE LINES 35-42

.. code-block:: default


    from braindecode.datasets import MOABBDataset

    subject_id = 3
    dataset = MOABBDataset(dataset_name="BNCI2014001", subject_ids=[subject_id])









.. GENERATED FROM PYTHON SOURCE LINES 43-46

Preprocessing
~~~~~~~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 49-62

Now we apply preprocessing like bandpass filtering to our dataset. You
can either apply functions provided by
`mne.Raw <https://mne.tools/stable/generated/mne.io.Raw.html>`__ or
`mne.Epochs <https://mne.tools/0.11/generated/mne.Epochs.html#mne.Epochs>`__
or apply your own functions, either to the MNE object or the underlying
numpy array.

.. note::
   These prepocessings are now directly applied to the loaded
   data, and not on-the-fly applied as transformations in
   PyTorch-libraries like
   `torchvision <https://pytorch.org/docs/stable/torchvision/index.html>`__.


.. GENERATED FROM PYTHON SOURCE LINES 62-84

.. code-block:: default


    from braindecode.preprocessing import (
        exponential_moving_standardize, preprocess, Preprocessor, scale)

    low_cut_hz = 4.  # low cut frequency for filtering
    high_cut_hz = 38.  # high cut frequency for filtering
    # Parameters for exponential moving standardization
    factor_new = 1e-3
    init_block_size = 1000

    preprocessors = [
        Preprocessor('pick_types', eeg=True, meg=False, stim=False),  # Keep EEG sensors
        Preprocessor(scale, factor=1e6, apply_on_array=True),  # Convert from V to uV
        Preprocessor('filter', l_freq=low_cut_hz, h_freq=high_cut_hz),  # Bandpass filter
        Preprocessor(exponential_moving_standardize,  # Exponential moving standardization
                     factor_new=factor_new, init_block_size=init_block_size)
    ]

    # Transform the data
    preprocess(dataset, preprocessors)






.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    /usr/share/miniconda/envs/braindecode/lib/python3.7/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function scale is deprecated; will be removed in 0.7.0. Use numpy.multiply instead.
      warnings.warn(msg, category=FutureWarning)

    <braindecode.datasets.moabb.MOABBDataset object at 0x7f7490ce8a50>



.. GENERATED FROM PYTHON SOURCE LINES 85-88

Cut Compute Windows
~~~~~~~~~~~~~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 91-97

Now we cut out compute windows, the inputs for the deep networks during
training. In the case of trialwise decoding, we just have to decide if
we want to cut out some part before and/or after the trial. For this
dataset, in our work, it often was beneficial to also cut out 500 ms
before the trial.


.. GENERATED FROM PYTHON SOURCE LINES 97-117

.. code-block:: default


    from braindecode.preprocessing import create_windows_from_events

    trial_start_offset_seconds = -0.5
    # Extract sampling frequency, check that they are same in all datasets
    sfreq = dataset.datasets[0].raw.info['sfreq']
    assert all([ds.raw.info['sfreq'] == sfreq for ds in dataset.datasets])
    # Calculate the trial start offset in samples.
    trial_start_offset_samples = int(trial_start_offset_seconds * sfreq)

    # Create windows using braindecode function for this. It needs parameters to define how
    # trials should be used.
    windows_dataset = create_windows_from_events(
        dataset,
        trial_start_offset_samples=trial_start_offset_samples,
        trial_stop_offset_samples=0,
        preload=True,
    )









.. GENERATED FROM PYTHON SOURCE LINES 118-121

Split dataset into train and valid
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 124-128

We can easily split the dataset using additional info stored in the
description attribute, in this case ``session`` column. We select
``session_T`` for training and ``session_E`` for validation.


.. GENERATED FROM PYTHON SOURCE LINES 128-134

.. code-block:: default


    splitted = windows_dataset.split('session')
    train_set = splitted['session_T']
    valid_set = splitted['session_E']









.. GENERATED FROM PYTHON SOURCE LINES 135-138

Create model
------------


.. GENERATED FROM PYTHON SOURCE LINES 141-150

Now we create the deep learning model! Braindecode comes with some
predefined convolutional neural network architectures for raw
time-domain EEG. Here, we use the shallow ConvNet model from `Deep
learning with convolutional neural networks for EEG decoding and
visualization <https://arxiv.org/abs/1703.05051>`__. These models are
pure `PyTorch <https://pytorch.org>`__ deep learning models, therefore
to use your own model, it just has to be a normal PyTorch
`nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__.


.. GENERATED FROM PYTHON SOURCE LINES 150-185

.. code-block:: default


    import torch
    from braindecode.util import set_random_seeds
    from braindecode.models import ShallowFBCSPNet

    cuda = torch.cuda.is_available()  # check if GPU is available, if True chooses to use it
    device = 'cuda' if cuda else 'cpu'
    if cuda:
        torch.backends.cudnn.benchmark = True
    # Set random seed to be able to roughly reproduce results
    # Note that with cudnn benchmark set to True, GPU indeterminism
    # may still make results substantially different between runs.
    # To obtain more consistent results at the cost of increased computation time,
    # you can set `cudnn_benchmark=False` in `set_random_seeds`
    # or remove `torch.backends.cudnn.benchmark = True`
    seed = 20200220
    set_random_seeds(seed=seed, cuda=cuda)

    n_classes = 4
    # Extract number of chans and time steps from dataset
    n_chans = train_set[0][0].shape[0]
    input_window_samples = train_set[0][0].shape[1]

    model = ShallowFBCSPNet(
        n_chans,
        n_classes,
        input_window_samples=input_window_samples,
        final_conv_length='auto',
    )

    # Send model to GPU
    if cuda:
        model.cuda()









.. GENERATED FROM PYTHON SOURCE LINES 186-189

Training
--------


.. GENERATED FROM PYTHON SOURCE LINES 192-197

Now we train the network! EEGClassifier is a Braindecode object
responsible for managing the training of neural networks. It inherits
from skorch.NeuralNetClassifier, so the training logic is the same as in
`Skorch <https://skorch.readthedocs.io/en/stable/>`__.


.. GENERATED FROM PYTHON SOURCE LINES 200-205

**Note**: In this tutorial, we use some default parameters that we
have found to work well for motor decoding, however we strongly
encourage you to perform your own hyperparameter optimization using
cross validation on your training data.


.. GENERATED FROM PYTHON SOURCE LINES 205-239

.. code-block:: default


    from skorch.callbacks import LRScheduler
    from skorch.helper import predefined_split

    from braindecode import EEGClassifier
    # These values we found good for shallow network:
    lr = 0.0625 * 0.01
    weight_decay = 0

    # For deep4 they should be:
    # lr = 1 * 0.01
    # weight_decay = 0.5 * 0.001

    batch_size = 64
    n_epochs = 4

    clf = EEGClassifier(
        model,
        criterion=torch.nn.NLLLoss,
        optimizer=torch.optim.AdamW,
        train_split=predefined_split(valid_set),  # using valid_set for validation
        optimizer__lr=lr,
        optimizer__weight_decay=weight_decay,
        batch_size=batch_size,
        callbacks=[
            "accuracy", ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
        ],
        device=device,
    )
    # Model training for a specified number of epochs. `y` is None as it is already supplied
    # in the dataset.
    clf.fit(train_set, y=None, epochs=n_epochs)






.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

      epoch    train_accuracy    train_loss    valid_accuracy    valid_loss      lr     dur
    -------  ----------------  ------------  ----------------  ------------  ------  ------
          1            0.2604        1.6159            0.2465        5.6117  0.0006  6.0832
          2            0.2535        1.2103            0.2535        6.3205  0.0005  5.5695
          3            0.2535        1.0746            0.2535        5.2373  0.0002  5.5706
          4            0.2674        1.0589            0.2535        3.9898  0.0000  5.5602

    <class 'braindecode.classifier.EEGClassifier'>[initialized](
      module_=ShallowFBCSPNet(
        (ensuredims): Ensure4d()
        (dimshuffle): Expression(expression=transpose_time_to_spat) 
        (conv_time): Conv2d(1, 40, kernel_size=(25, 1), stride=(1, 1))
        (conv_spat): Conv2d(40, 40, kernel_size=(1, 22), stride=(1, 1), bias=False)
        (bnorm): BatchNorm2d(40, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv_nonlin_exp): Expression(expression=square) 
        (pool): AvgPool2d(kernel_size=(75, 1), stride=(15, 1), padding=0)
        (pool_nonlin_exp): Expression(expression=safe_log) 
        (drop): Dropout(p=0.5, inplace=False)
        (conv_classifier): Conv2d(40, 4, kernel_size=(69, 1), stride=(1, 1))
        (softmax): LogSoftmax(dim=1)
        (squeeze): Expression(expression=squeeze_final_output) 
      ),
    )



.. GENERATED FROM PYTHON SOURCE LINES 240-243

Plot Results
------------


.. GENERATED FROM PYTHON SOURCE LINES 246-249

Now we use the history stored by Skorch throughout training to plot
accuracy and loss curves.


.. GENERATED FROM PYTHON SOURCE LINES 249-288

.. code-block:: default


    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D
    import pandas as pd

    # Extract loss and accuracy values for plotting from history object
    results_columns = ['train_loss', 'valid_loss', 'train_accuracy', 'valid_accuracy']
    df = pd.DataFrame(clf.history[:, results_columns], columns=results_columns,
                      index=clf.history[:, 'epoch'])

    # get percent of misclass for better visual comparison to loss
    df = df.assign(train_misclass=100 - 100 * df.train_accuracy,
                   valid_misclass=100 - 100 * df.valid_accuracy)

    plt.style.use('seaborn')
    fig, ax1 = plt.subplots(figsize=(8, 3))
    df.loc[:, ['train_loss', 'valid_loss']].plot(
        ax=ax1, style=['-', ':'], marker='o', color='tab:blue', legend=False, fontsize=14)

    ax1.tick_params(axis='y', labelcolor='tab:blue', labelsize=14)
    ax1.set_ylabel("Loss", color='tab:blue', fontsize=14)

    ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis

    df.loc[:, ['train_misclass', 'valid_misclass']].plot(
        ax=ax2, style=['-', ':'], marker='o', color='tab:red', legend=False)
    ax2.tick_params(axis='y', labelcolor='tab:red', labelsize=14)
    ax2.set_ylabel("Misclassification Rate [%]", color='tab:red', fontsize=14)
    ax2.set_ylim(ax2.get_ylim()[0], 85)  # make some room for legend
    ax1.set_xlabel("Epoch", fontsize=14)

    # where some data has already been plotted to ax
    handles = []
    handles.append(Line2D([0], [0], color='black', linewidth=1, linestyle='-', label='Train'))
    handles.append(Line2D([0], [0], color='black', linewidth=1, linestyle=':', label='Valid'))
    plt.legend(handles, [h.get_label() for h in handles], fontsize=14)
    plt.tight_layout()





.. image-sg:: /auto_examples/images/sphx_glr_plot_bcic_iv_2a_moabb_trial_001.png
   :alt: plot bcic iv 2a moabb trial
   :srcset: /auto_examples/images/sphx_glr_plot_bcic_iv_2a_moabb_trial_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 289-292

Plot Confusion Matrix
---------------------


.. GENERATED FROM PYTHON SOURCE LINES 295-297

Generate a confusion matrix as in https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.23730


.. GENERATED FROM PYTHON SOURCE LINES 297-318

.. code-block:: default



    from sklearn.metrics import confusion_matrix
    from braindecode.visualization import plot_confusion_matrix

    # generate confusion matrices
    # get the targets
    y_true = valid_set.get_metadata().target
    y_pred = clf.predict(valid_set)

    # generating confusion matrix
    confusion_mat = confusion_matrix(y_true, y_pred)

    # add class labels
    # label_dict is class_name : str -> i_class : int
    label_dict = valid_set.datasets[0].windows.event_id.items()
    # sort the labels by values (values are integer class labels)
    labels = list(dict(sorted(list(label_dict), key=lambda kv: kv[1])).keys())

    # plot the basic conf. matrix
    plot_confusion_matrix(confusion_mat, class_names=labels)



.. image-sg:: /auto_examples/images/sphx_glr_plot_bcic_iv_2a_moabb_trial_002.png
   :alt: plot bcic iv 2a moabb trial
   :srcset: /auto_examples/images/sphx_glr_plot_bcic_iv_2a_moabb_trial_002.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none


    <Figure size 800x550 with 1 Axes>




.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  38.212 seconds)

**Estimated memory usage:**  1552 MB


.. _sphx_glr_download_auto_examples_plot_bcic_iv_2a_moabb_trial.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: plot_bcic_iv_2a_moabb_trial.py <plot_bcic_iv_2a_moabb_trial.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: plot_bcic_iv_2a_moabb_trial.ipynb <plot_bcic_iv_2a_moabb_trial.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_